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7.1 INTRODUCTION

The preceding chapters dealt with the modeling and estimation of
population size and with the simplest summary of population dynamics:
population trend. The following chapters focus on one of the main
components of population dynamics: survival probability. Survival prob-
ability is a key demographic parameter and can have a strong impact on
population dynamics (Clobert and Lebreton, 1991; Saether and Bakke,
2000). Typically, interest focuses on estimation (what is the survival in
that population?) as well as on modeling, for example, to test whether
survival changes with age or differs between groups of individuals or
regions, and to estimate how strongly it varies over time or what propor-
tion of temporal variability can be explained by an external covariate such
as weather.

In principle, survival estimation is fairly simple—we just have to count
the number of individuals alive at a given time t (Ct), and keep track of
how many of them die (DΔt) during the period Δt for which we wish to
estimate survival. Sometimes, it may be easier to count the number of the
Ct that are still alive at t + Δt, that is, the number that survived the period
Δt (LΔt). Then survival probability st is

st =
Ct −DΔt

Ct
= LΔt

Ct

These numbers may easily be obtained in humans, but they are difficult to
get in animal or plant populations. The reason for that is because the
detection of individuals is usually far from perfect, so when an individual
is not seen, we don’t know whether it is dead or still alive. Therefore, such
simple calculations cannot often be used, and we need to account for the
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observation process in our inferences about survival (an exception being
data on individuals with radio tags, White and Garrott, 1990). From the
number of individuals recorded at t (Ct), we typically detect only a frac-
tion of those still alive at time t +Δt, which is p*LΔt: p is the recapture or
resighting probability (depending on the context or study design), which
needs to be estimated in order to obtain unbiased estimates of survival.
Estimating p becomes possible if we extend the recapture study to at
least one further time step (t + 2Δt). We may then have individuals that
are known to have survived until t + 2Δt, but which have not been seen
at time t +Δt. Intuitively, it is clear that the proportion of these individuals
provides information on p.

The most common statistical method to jointly estimate recapture and
survival probabilities in animal and plant populations is a class of open
population capture–recapture models to which the Cormack–Jolly–Seber
(CJS) model belongs (Cormack, 1964; Jolly, 1965; Seber, 1965). Re-encounters
may be obtained by different methods (physical capture, sightings, genetic
tracking), but the key is that individuals are identified without error. That is,
we only have false negatives, but no false positives. The frequentist analysis
of the CJS model is described in detail in Lebreton et al. (1992) and Williams
et al. (2002). Descriptions and examples of the Bayesian analysis of the CJS
model can be found in an increasing number of articles and books (Brooks
et al., 2000a; McCarthy and Masters, 2005; Gimenez et al., 2007; McCarthy,
2007; Zheng et al., 2007; Royle, 2008; Royle and Dorazio, 2008; Schofield
et al., 2009; Gimenez et al., 2009a; King et al., 2010).

The CJS model can be fitted using either a multinomial (Lebreton et al.,
1992) or a state-space likelihood (Gimenez et al., 2007; Royle, 2008).
Because these two likelihoods are just different ways of describing what
is essentially the same model, they are based on the same sampling design
and the same underlying model assumptions. The sampling design is as
follows: A random sample of individuals from the study population is
captured, all are marked individually, and released into the population
again. This is repeated several times. The length of the time intervals
between repeated capture occasions depends on the research question,
as well as on the life history and population dynamics of the study
organism, and capture should be instantaneous or over a short time per-
iod. Some marked individuals will be re-encountered, and thus, we obtain
capture–recapture data that can be summarized in individual capture-
histories.

The CJS model makes a number of assumptions and, as usual, their
violation may bias parameter estimators. Some assumptions must be met
at the design stage of a study. Tags or other marks must not be lost, other-
wise survival is underestimated. If mark loss is suspected, double marking
and corresponding model adaptation that account for mark loss are
necessary to get unbiased estimates of survival (e.g., Smout et al., 2011).
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Ideally, capture should be instantaneous, otherwise the interval between
capture occasions may differ among individuals and, consequently, there
will be individual heterogeneity in survival. However, simulation studies
have suggested that the violation of this last assumption does often not
have a strong effect on parameters estimates (Hargrove and Borland,
1994). The CJS model also assumes that the identity of the individuals is
always recorded without errors. If this assumption is violated, bias can
go in either direction, and there is no means to correct for it. Finally, cap-
tured and recaptured individuals are regarded as a random sample from
the study population. This sounds easy, but in practice, it can be difficult
to achieve. For example, in studies on birds using nest boxes, it is
quite typical that adults are only captured after the young have hatched
because they are likely to abandon their brood if they are disturbed at an
early stage. This results in a sample that is biased toward successfully
breeding adults, which may or may not be a random sample from all adults
in the population.

Further assumptions of the CJS model cannot be violated or fulfilled by
the design of the study, rather they are a consequence of how the model is
specified. The basic model assumes that each individual within an age
class or group has the same survival and recapture probability. Good-
ness-of-fit tests help to identify severe violation of these assumptions
(e.g., trap-response: Pradel, 1993; transients: Pradel et al., 1997), and
modifications to the model allow to account for these violations. Indivi-
duals must behave independently from each other in terms of survival
and recapture. This may not be the case if members of the same family
are included in a sample and especially if they remain in family groups.
Violation of this assumption is like pseudo-replication (Hurlbert, 1984).
The degree of nonindependence leading to overdispersion can be esti-
mated and the standard errors of the estimates as well as AIC-based
model selection can be adjusted accordingly (Anderson et al., 1994).

With CJS models, we estimate recapture probability (pt; the probability
of catching/resighting a marked individual at t that is alive and in the
sampling population at t) and apparent (also called “local”) survival
probability (ϕt; the probability that an individual that is alive and in the
population at t is still alive and in the population at time t + 1). Mortality
and permanent emigration are confounded, and therefore apparent survi-
val is always lower than true survival whenever permanent emigration is
not zero. The difference between apparent and true survival is a matter of
study design. Generally, the larger a study area the closer the match
between apparent and true survival because dispersing individuals have
a higher probability to remain in the study area (Marshall et al., 2004).
Throughout this chapter, we will often just write “survival” for ease of
presentation—but it is important to remember that survival in the CJS
model always refers to a study area.

7. CORMACK–JOLLY–SEBER MODELS174



In this chapter, we introduce the CJS model and illustrate how it is fitted
using the state-space (Sections 7.2–7.8) and the multinomial likelihood
(Sections 7.9–7.11). We highlight advantages and disadvantages of each
approach. Moreover, we will repeatedly use the generalized linear
(mixed) model (GLM and GLMM) formulations to describe structure in
the parameters. This allows the modeling of individual and temporal
effects, both of which can either be categorical or continuous, as well as
fixed or random. We will also see how correlations among parameters
can be modeled through correlated random effects, using a multivariate
normal distribution. In most examples, we focus on the modeling of sur-
vival, yet, clearly, similar modeling can be conducted for the recapture
probability, and all these GLM formulations can also be used in other
capture–recapture types of models starting with Chapter 6. Finally, in
Section 7.10, we introduce posterior predictive model checking (see
Gelman et al., 1996, 2004; Kéry, 2010). This provides a very general frame-
work for the assessment of goodness-of-fit of a model to a data set.

7.2 THE CJS MODEL AS A STATE-SPACE MODEL

The state-space formulation of the CJS model has been introduced by
Gimenez et al. (2007) and Royle (2008). Let us assume an individual
marked at time t. It may survive until time t + 1 with probability ϕt. Con-
ceptually, we can imagine the individual tossing a coin to determine
whether it survives (with probability ϕt) or dies (with probability 1 – ϕt).
Given that the individual is still alive at time t + 1, it may again survive
until t + 2 with probability ϕt+1. This process is continued until the indivi-
dual is either dead or the study ends. Clearly, once an individual is dead,
its fate is no longer stochastic, and it will remain dead with probability 1.
This is the description of the state process, that is, of the states (alive, dead)
of an individual over time. We would like to know survival, which
requires knowledge of these states of the individuals. Yet, we typically
do not have complete information about the true states. A marked indivi-
dual that is alive at occasion t may be recaptured (or more generally
re-encountered) with probability pt. Again, we can imagine that a coin is
tossed, determining whether the individual is recaptured (with probability
pt) or not (with probability 1 − pt). Once an individual is dead, it cannot be
recaptured anymore. This is the description of the observation process,
which is conditional on the state process, and thus there is a hierarchal
structure in the state-space model. In Fig. 7.1, the two processes are
shown graphically.

The data observed in a capture–recapture study can be summarized in
a capture-history matrix (y), which has dimension I × T, where I is the
total number of marked individuals, and T is the number of capture
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occasions. Thematrix entries are either a 1 or a 0. A 1 at position i, t indicates
that individual i was captured at occasion t, meaning that it was alive for
sure; a 0 at position i, t shows that individual i was not captured at t,
meaning that it was either dead, or alive but not caught, or not yet
marked.

To estimate survival from such data, we define the latent variable zi,t,
which takes value 1 if individual i is alive at time t, and value 0 if it is
dead. Thus, zi,t defines the true state of individual i at time t. We also
define vector fi, which denotes the occasion at which individual i is first
captured (i.e., marked) because only events after first capture are modeled
in the CJS model. The state of individual i at first capture (zi,fi) is 1 with
probability 1, as the individual is alive for certain. The states on sub-
sequent occasions are modeled as Bernoulli trials. Conditional on being
alive at occasion t, individual i may survive until occasion t + 1 with
probability ϕi,t (t = 1, …, T − 1). The following two equations define the
state process:

zi,fi = 1

zi,t+1 jzi,t � Bernoulliðzi,tϕi,tÞ:

The Bernoulli success parameter is composed of the product of survival
and the state variable z. The inclusion of z ensures that a dead individual
(z = 0) remains dead and has no further impact on the estimation of
survival.

If individual i is alive at occasion t, it may be recaptured with probabi-
lity pi,t (t = 2, …, T). This can again be modeled as the realization of a

Alive

Seen

Not seen

Stochastic processes (survival and recapture)
Deterministic process

Dead

State process

Observation process

FIGURE 7.1 Example of the state and observation process of a marked individual over
time for the CJS model. The sequence of true states in this individual is z = [1, 1, 1, 1 ,1, 0, 0],
and the observed capture-history is y = [1, 1, 0, 1, 0, 0, 0].
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Bernoulli trial with success probability pi,t. The following equation defines
the observation process:

yi,t jzi,t � Bernoulliðzi,tpi,tÞ:

The inclusion of the latent variable z in the Bernoulli trial ensures that
dead individuals cannot be encountered. The state and the observation
process are both defined for t ≥ fi. We repeat that the initial capture
process is not modeled in the CJS model (see Fig. 7.1) because the initial
observation at the time of capture does not contain any information about
survival. In contrast, capture-histories at and before initial capture contain
information about recruitment, which is a target of estimation of the Jolly–
Seber models (see Chapter 10). Because initial capture is not modeled in
the CJS model, we say that we condition on first capture.

The implementation of the CJS model in WinBUGS is straightforward.
The most general likelihood is based on the above-mentioned three equa-
tions and contains different survival and recapture probabilities for each
individual at each capture occasion. However, the parameters of this satu-
rated model are not separately estimable (see Section 7.9 for more on this
topic), and we need to introduce constraints. These constraints define
the structure of the model fitted and may be imposed either along the
time or the individual axis of the capture-history matrix, or along both
(see Section 6.2). Thus, whatever model we fit, we do not need to change
the likelihood, which describes the basic structure of the model, but just
these constraints and the corresponding priors. This may not result in
code that is the most efficient in terms of computing time and the easiest
to read for a beginner. However, with a little practice, it will be seen to
be an efficient way of fitting a wide array of models.

7.3 MODELS WITH CONSTANT PARAMETERS

We start with a very simple model, in which survival and recapture,
respectively, are identical for all individuals at all occasions. Thus,
we impose constraints along both the time and the individual axis of
the capture-history matrix. We first simulate the data, and then analyze
them. The function to simulate capture–recapture data (simul.cjs) is
very general and works for all examples in this chapter. We choose the
number of individuals released at each occasion. The function then eval-
uates for each released individual whether it survives, and if so, whether it
is recaptured, by two Bernoulli trials governed by individual- and time-
specific survival and recapture probabilities that we also provide as input
(matrices PHI and P). Thus, the data-generating function works analogous
to the analyzing model.
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In the simulation, we will mimic a study on little owls (Fig. 7.2), a small
owl species living in semi-open habitats such as orchards, where it likes to
occupy nest boxes. Nest boxes in a study area are checked in May in six
study years, and breeding adults are ringed. In each of the six study years,
50 unmarked (new) adults are caught, along with a variable number of
individuals that are already marked. Survival of adult little owls is
typically around 0.65 (Schaub et al., 2006), and we assume a recapture
probability of 0.4. The following R code simulates a matrix with
capture-histories. We do not consider individuals first captured on the
last occasion, because they do not provide information about survival
and recapture.

# Define parameter values
n.occasions <- 6 # Number of capture occasions
marked <- rep(50, n.occasions−1) # Annual number of newly marked

individuals
phi <- rep(0.65, n.occasions−1)
p <- rep(0.4, n.occasions−1)

# Define matrices with survival and recapture probabilities
PHI <- matrix(phi, ncol = n.occasions−1, nrow = sum(marked))
P <- matrix(p, ncol = n.occasions−1, nrow = sum(marked))

# Define function to simulate a capture-history (CH) matrix
simul.cjs <- function(PHI, P, marked){

n.occasions <- dim(PHI)[2] + 1

FIGURE 7.2 Pair of little owls (Athene noctua) (Photograph by H. Sylvain).
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CH <- matrix(0, ncol = n.occasions, nrow = sum(marked))
# Define a vector with the occasion of marking
mark.occ <- rep(1:length(marked), marked[1:length(marked)])
# Fill the CH matrix
for (i in 1:sum(marked)){

CH[i, mark.occ[i]] <- 1 # Write an 1 at the release occasion
if (mark.occ[i]==n.occasions) next
for (t in (mark.occ[i]+1):n.occasions){

# Bernoulli trial: does individual survive occasion?
sur <- rbinom(1, 1, PHI[i,t−1])
if (sur==0) break # If dead, move to next individual
# Bernoulli trial: is individual recaptured?
rp <- rbinom(1, 1, P[i,t−1])
if (rp==1) CH[i,t] <- 1
} #t

} #i
return(CH)
}

# Execute function
CH <- simul.cjs(PHI, P, marked)

Next, we need to create vector f, which contains the occasion at which
each individual is marked.

# Create vector with occasion of marking
get.first <- function(x) min(which(x!=0))
f <- apply(CH, 1, get.first)

Finally, we write the BUGS code for a constant model. The two linear
models applied are ϕi,t = ϕ and pi,t = p. These are in fact the linear pre-
dictors (see Chapter 3), but here we call them constraints because we
reduce the dimensions of the ϕi,t and pi,t, that is, we constrain them.
We do not include covariates or random effects, so there is no need for
a transformation, and the identity link is applied. The uniform priors
ensure that the parameter estimates are in the interval [0, 1]. The speci-
fication of noninformative priors is easy because a uniform (U(0, 1)) or a
beta distribution (beta(1,1)) can be used. Note that the time indexing in
the “Likelihood” part is slightly different to that used in the formulas
(see Section 7.2). It avoids the use of separate loops for the state and
the observation process.

# Specify model in BUGS language
sink("cjs-c-c.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
phi[i,t] <- mean.phi
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p[i,t] <- mean.p
} #t

} #i

mean.phi ~ dunif(0, 1) # Prior for mean survival
mean.p ~ dunif(0, 1) # Prior for mean recapture

# Likelihood
for (i in 1:nind){

# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){

# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t−1] * z[i,t−1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p[i,t-1] * z[i,t]
} #t

} #i
}
",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions =

dim(CH)[2])

Initial values should be given for the two structural parameters and for
the latent variable z. The easiest way for the latter is just to use the observed
capture-histories. We have to make sure that initial values for z are pro-
vided only after initial capture. The function below creates the required
initial values based on the observed capture-histories and the vector with
the occasion of first capture.

# Function to create a matrix of initial values for latent state z
ch.init <- function(ch, f){

for (i in 1:dim(ch)[1]){ch[i,1:f[i]] <- NA}
return(ch)
}

# Initial values
inits <- function(){list(z = ch.init(CH, f), mean.phi = runif(1, 0, 1),

mean.p = runif(1, 0, 1))}

# Parameters monitored
parameters <- c("mean.phi", "mean.p")

# MCMC settings
ni <- 10000
nt <- 6
nb <- 5000
nc <- 3
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# Call WinBUGS from R (BRT 1 min)
cjs.c.c <- bugs(bugs.data, inits, parameters, "cjs-c-c.bug", n.chains =

nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

The model does not take a long time to run and convergence is reached
after just 5000 iterations. The estimates are very close to the values used
for the simulations.

# Summarize posteriors
print(cjs.c.c, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
mean.phi 0.679 0.043 0.601 0.649 0.677 0.707 0.767 1.003 980
mean.p 0.370 0.044 0.286 0.340 0.369 0.400 0.458 1.003 1700

Sometimes not all individuals recaptured are released again, for
instance, when an individual dies at capture. For these individuals, we
know that they have survived from initial capture until the last capture;
afterward they are not in the sample anymore. This is easy to model and
just requires that we define a vector h which for each individual contains
the occasion after which it is not released. For individuals that stay in the
sample until the end of the study, the element of vector h is just the last
occasion of the study. Then, vector h must become an element of the input
data and the loop in the likelihood needs to be changed from for (t in

(f[i]+1):n.occasions){ ... to for (t in (f[i]+1):h[i]){...

7.3.1 Inclusion of Information about Latent State Variable

Written as state-space models, CJS models can take a long time to run
because there is a loop over all individuals and occasions. The latent state
variable z needs to be updated (estimated) at each MCMC iteration. So far
we have treated z as if we had no information about it. The only informa-
tion that we included are the observed capture-histories (Y), but they are
related to z only through the observation process in the state-space model.
Therefore, all elements of z (i.e., for all individuals after first capture) must
be estimated, even when some of them are known.

To improve computation speed and convergence, we can add what we
know about the latent state z, namely, whenever we observe a marked
individual we know its latent state is z = 1. In addition, we know that
z = 1 for all occasions between the first and the last observation of an indi-
vidual, even if it was not seen at all occasions. To include this information
in the model (i.e. to prevent estimation of what is not an unknown
quantity), we create a matrix that has a value of 1 at all occasions where
we know individuals were alive, and NAs elsewhere. The CJS model is
conditional on first capture, so the latent state is only defined after first
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capture, and thus at all first captures, we need NAs as well. The following
function creates the required matrix.

# Function to create a matrix with information about known latent state z
known.state.cjs <- function(ch){

state <- ch
for (i in 1:dim(ch)[1]){

n1 <- min(which(ch[i,]==1))
n2 <- max(which(ch[i,]==1))
state[i,n1:n2] <- 1
state[i,n1] <- NA
}

state[state==0] <- NA
return(state)
}

This information about z is then given as data as well.

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions = dim(CH)[2],

z = known.state.cjs(CH))

The initial values for z now also require some changes: we should not
give initial values for those elements of z whose value is specified in the
data; they get an NA.

# Function to create a matrix of initial values for latent state z
cjs.init.z <- function(ch,f){

for (i in 1:dim(ch)[1]){
if (sum(ch[i,])==1) next
n2 <- max(which(ch[i,]==1))
ch[i,f[i]:n2] <- NA
}

for (i in 1:dim(ch)[1]){
ch[i,1:f[i]] <- NA
}
return(ch)
}

Now, we give initial values for all the quantities to be estimated and
run the model:

# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), mean.phi = runif(1, 0, 1),

mean.p = runif(1, 0, 1))}

# Parameters monitored
parameters <- c("mean.phi", "mean.p")

# MCMC settings
ni <- 10000
nt <- 6
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nb <- 5000
nc <- 3

# Call WinBUGS from R (BRT <1 min)
cjs.c.c <- bugs(bugs.data, inits, parameters, "cjs-c-c.bug", n.chains =

nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

# Summarize posteriors
print(cjs.c.c, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
mean.phi 0.675 0.040 0.599 0.648 0.675 0.702 0.754 1.003 2500
mean.p 0.372 0.043 0.294 0.342 0.371 0.399 0.461 1.003 2500

The model now runs faster. The difference in run time in this simple
case is slight, but time savings can be substantial with more complex mod-
els and larger data sets. Therefore, we recommend providing all available
information about the latent state in the data. In the following sections of
this chapter, we will always, and in most other chapters often, do this.
Note that the inclusion of the information about the latent state z has noth-
ing to do with the use of an informative prior, we simply avoid estimation
of known quantities to speed up computation.

7.4 MODELS WITH TIME-VARIATION

So far we have fitted the simplest possible model in the CJS family. It
assumes that survival and recapture probabilities remain constant over
time and are identical for all individuals. In practice, we typically want
to relax these strict assumptions. We also may have an interest in fitting
models that combine time and individual effects and modeling these
effects as additive or interactive. We next consider models with temporal
variation, that is, we model the column dimension of the capture-history
matrix and constrain the row dimension to be constant (all individuals are
treated as identical).

The variation of survival probability from one year to another often has
a strong impact on the dynamics of a population. If survival varies much
from year to year (i.e., temporal variability is large), population size
changes more than when survival probability changes only little over
time, all other demographic processes being equal. Thus, there is an inter-
est in measuring temporal variation. Moreover, the annual fluctuations of
survival or recapture may be caused by environmental factors that we
may have an interest in identifying.

The models to study temporal effects of survival or recapture assume
either fixed or random temporal effects, as well as the relationship between
focal parameters and temporally varying covariates (e.g., weather).
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The fixed-effect time model assumes the parameters to be different at each
occasion and independent of each other. This approach is used if there is
interest in estimates from particular occasions. By contrast, the model
that considers time to be a random effect assumes that time effects are
drawn from a statistical distribution, whose parameters we aim to estimate;
typically, we will use a normal distribution and estimate a mean and a var-
iance. Therefore, annual estimates are no longer independent from one
another. Interest is then not so much in the individual annual effects, but
more in an estimation of the mean and the variance of the annual estimates.
Fixed- and random-effects models are easily fit within the framework that
we have set up (see Chapter 4). The likelihood part of the BUGS code does
not need any change at all: all required modifications take place in the
“Priors and constraints” section of the BUGS code. In the examples that
follow, we will usually model effects on survival only, but of course simi-
lar models can be adopted for recapture, too, and any combinations are
possible, for example, survival with random time effects and recapture
with fixed time effects.

7.4.1 Fixed Time Effects

We now assume that survival and recapture vary independently over
time, that is, we regard time as a fixed-effects factor. To implement this
model, we impose the following constraints: ϕi,t = αt and pi,t = βt, where αt
and βt are the time-specific survival and recapture probabilities, respectively.
Here is the part of the BUGS model specification that needs to be changed.

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
phi[i,t] <- alpha[t]
p[i,t] <- beta[t]
} #t

} #i
for (t in 1:n.occasions−1)){

alpha[t] ~ dunif(0, 1) # Priors for time-spec. survival
beta[t] ~ dunif(0, 1) # Priors for time-spec. recapture
}

7.4.2 Random Time Effects

The model just shown treats time as a fixed-effects factor; for every
occasion, an independent effect is estimated. To assess the temporal varia-
bility, we cannot simply take these fixed-effects estimates and calculate
their variance. By doing so, we would ignore the fact that these values
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are estimates that have an unknown associated error. Thus, we would
assume that there is no sampling variance, and this can hardly ever be
true (see, e.g., Gould and Nichols, 1998). However, when treating time
as a random-effects factor, we can separate sampling (i.e., variance within
years) from process variance (i.e., variance between years), exactly as we
did in the state-space models in Chapter 5. We model survival or recap-
ture probabilities on the logit scale as a realization of a random process
described by a normal distribution with mean μ and variance σ2. The
logit link function ensures that the estimated probabilities remain within
the interval between 0 and 1:

logitðϕi,tÞ = μ+ εt

εt �Normalð0, σ2Þ:
εt is the deviation from the overall mean survival probability; thus it is a
“temporal residual”. The temporal variance (σ2) is on the logit scale; thus,
it is the temporal variance of the logit survival. Sometimes, one needs an
estimate on the probability scale, for instance, when the temporal variance
should be compared with the variance of another demographic rate to
decide which parameter is more variable over time. A back-transformation
is possible by applying the delta method (Powell, 2007). We use

σ2θ ffi σ2θ2ð1− θÞ2,

where θ = expðμÞ
1+ expðμÞ and σ2θ is the variance on the back-transformed scale. It is

easy to estimate this quantity directly in BUGS.
To illustrate the approach, we simulate data and analyze them. In the

little owl example, we assume a mean survival probability of females of
0.65 and temporal variance of 1 on the logit scale. Reasonable estimates of
the temporal variance require a large number of years (>10; Burnham and
White, 2002). Here, we simulate data over 20 years.

# Define parameter values
n.occasions <- 20 # Number of capture occasions
marked <- rep(30, n.occasions−1) # Annual number of newly marked

individuals
mean.phi <- 0.65
var.phi <- 1 # Temporal variance of survival
p <- rep(0.4, n.occasions−1)

# Determine annual survival probabilities
logit.phi <- rnorm(n.occasions−1, qlogis(mean.phi), var.phi^0.5)
phi <- plogis(logit.phi)

# Define matrices with survival and recapture probabilities
PHI<- matrix(phi, ncol = n.occasions−1, nrow = sum(marked), byrow = TRUE)
P <- matrix(p, ncol = n.occasions−1, nrow = sum(marked))
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# Simulate capture-histories
CH <- simul.cjs(PHI, P, marked)

# Create vector with occasion of marking
get.first <- function(x) min(which(x!=0))
f <- apply(CH, 1, get.first)

In the BUGS model description, we only alter parts in the “Priors and
constraints” sections; no change is required in the likelihood part. In parti-
cular, we have to implement the random-effects formulation (formula
above). The prior choices for μ and for σ2 need some thought. Because μ
is the mean survival on the logit scale, a noninformative prior on the
logit scale would be a normal distribution with a wide variance. Yet, this
prior will not be noninformative on the probability scale. In the code below,
we provide two options: first, a normal distribution with a wide variance
for μ, and second, a uniform distribution for logit−1(μ), which is noninfor-
mative on the probability scale but informative on the logit scale. A prior is
also needed for σ2. Following Gelman (2006), we use a uniform distribution
for the standard deviation because this induces little information. We will fit
the same model under which we generated the data, that is, model ϕt, p.,
where by the underlined index for time, we denote random time effects.

# Specify model in BUGS language
sink("cjs-temp-raneff.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
logit(phi[i,t]) <- mu + epsilon[t]
p[i,t] <- mean.p
} #t

} #i
for (t in 1:(n.occasions−1)){

epsilon[t] ~ dnorm(0, tau)
}

#mu ~ dnorm(0, 0.001) # Prior for logit of mean survival
#mean.phi <- 1 / (1+exp(−mu)) # Logit transformation
mean.phi ~ dunif(0, 1) # Prior for mean survival
mu <- log(mean.phi / (1−mean.phi)) # Logit transformation
sigma ~ dunif(0, 10) # Prior for standard deviation
tau <- pow(sigma, −2)
sigma2 <- pow(sigma, 2) # Temporal variance
mean.p ~ dunif(0, 1) # Prior for mean recapture

# Likelihood
for (i in 1:nind){

# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){
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# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t−1] * z[i,t−1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p[i,t−1] * z[i,t]
} #t

} #i
}
",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions = dim(CH)[2],

z = known.state.cjs(CH))

# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), mean.phi = runif(1, 0, 1),

sigma = runif(1, 0, 10), mean.p = runif(1, 0, 1))}

# Parameters monitored
parameters <- c("mean.phi", "mean.p", "sigma2")

# MCMC settings
ni <- 10000
nt <- 6
nb <- 5000
nc <- 3

# Call WinBUGS from R (BRT 17 min)
cjs.ran <- bugs(bugs.data, inits, parameters, "cjs-temp-raneff.bug",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

The chains evolve slowly and convergence is not achieved swiftly. This
can be improved if a smaller range is chosen for the prior for the standard
deviation of the temporal variance. Here, we used a uniform prior in the
interval between 0 and 10, thus the variance could take values between 0
and 100. Hadwe chosen a higher upper bound, the estimatewould probabil-
ity not change (recall we simulated the data with a variance of 1), but the
chains would converge even more slowly. Computation for this model is
more efficient for themultinomial formulation of themodel (see Section 7.10).

# Summarize posteriors
print(cjs.ran, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
mean.phi 0.634 0.073 0.488 0.590 0.634 0.678 0.787 1.017 120
mean.p 0.394 0.024 0.350 0.378 0.394 0.411 0.441 1.001 2000
sigma2 1.700 1.152 0.548 1.006 1.402 2.005 4.687 1.006 440

# Produce histogram
hist(cjs.ran$sims.list$sigma2, col = "gray", nclass = 35, las = 1,

xlab = expression(sigma^2), main = "")
abline(v = var.phi, col = "red", lwd = 2)
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The histogram of the posterior samples of the temporal variance for one
simulated data set is shown in Fig. 7.3. The point estimate may seem
biased; however, recall that this is just a single simulation, and we
would need many simulations to check for any bias (see exercise 4 in
Section 7.13).

7.4.3 Temporal Covariates

Often we are not only interested in getting a point estimate of survival
or of its temporal variability, but also in identifying factors affecting sur-
vival. One way to do this is to see whether the observed temporal pat-
tern in survival matches the temporal variation of an environmental
factor (e.g., winter severity). From a nonzero correlation we would
then infer an effect of that factor on survival. However, regardless of
how the model is specified, such evidence is of correlative nature, thus
causation cannot be inferred. A properly designed experiment is needed
to infer causation, which is not easy in population studies (but see
Schwarz, 2002).

Traditionally, so-called ultrastructural modeling has been used to
model survival as a function of a covariate (x) (Lebreton et al., 1992;
Link, 1999):

logitðϕi,tÞ = μ+ βxt:
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FIGURE 7.3 Posterior distribution of the temporal variance in apparent survival (red:
value used for data generation).
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This model assumes that the entire temporal variability of survival
could be explained by the covariate x; it is analogous to a linear regression
model without residuals. This seems quite unrealistic, but in earlier times,
this was the only way that the relationship between survival and a covari-
ate could be modeled. A more realistic approach is to assume that only
part of the temporal variability of survival is explained by the covariate,
another part being unexplained random variation. Thus, we specify this
model:

logitðϕi,tÞ = μ+ βxt + εt

εt �Normalð0, σ2Þ:

The residual variance (σ2) is the unexplained temporal variance. This
allows us to estimate the amount of the total temporal variance which
is explained by covariate x. We need to fit a model without the covariate
to get an estimate of the total temporal variance (σ2total). The proportion
of the variance explained by covariate x is then ðσ2total − σ2Þ/σ2total (Grosbois
et al., 2008).

To illustrate the model with the little owl example, we assume a mean
survival of 0.65 and a negative effect of winter severity with logistic-linear
slope of −0.3. The winter severity index is standardized (mean = 0, var-
iance = 1) and the residual temporal variance not explained by winter
severity has variance of 0.2.

# Define parameter values
n.occasions <- 20 # Number of capture occasions
marked <- rep(15, n.occasions−1) # Annual number of newly marked

individuals

mean.phi <- 0.65
p <- rep(0.4, n.occasions−1)
beta <- −0.3 # Slope of survival-winter

relationship
r.var <- 0.2 # Residual temporal variance

# Draw annual survival probabilities
winter <- rnorm(n.occasions−1, 0, 1^0.5)
logit.phi <- qlogis(mean.phi) + beta*winter + rnorm(n.occasions−1, 0,

r.var^0.5)
phi <- plogis(logit.phi)

# Define matrices with survival and recapture probabilities
PHI <- matrix(phi, ncol = n.occasions−1, nrow = sum(marked),

byrow = TRUE)
P <- matrix(p, ncol = n.occasions−1, nrow = sum(marked))
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# Simulate capture-histories
CH <- simul.cjs(PHI, P, marked)

# Create vector with occasion of marking
get.first <- function(x) min(which(x!=0))
f <- apply(CH, 1, get.first)

# Specify model in BUGS language
sink("cjs-cov-raneff.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
logit(phi[i,t]) <- mu + beta*x[t] + epsilon[t]
p[i,t] <- mean.p
} #t

} #i
for (t in 1:(n.occasions−1)){

epsilon[t] ~ dnorm(0, tau)
phi.est[t] <- 1 / (1+exp(−mu-beta*x[t]−epsilon[t])) # Yearly

survival
}

mu ~ dnorm(0, 0.001) # Prior for logit of mean survival
mean.phi <- 1 / (1+exp(−mu)) # Logit transformation
beta ~ dnorm(0, 0.001)I(−10, 10) # Prior for slope parameter
sigma ~ dunif(0, 10) # Prior on standard deviation
tau <- pow(sigma, −2)
sigma2 <- pow(sigma, 2) # Residual temporal variance
mean.p ~ dunif(0, 1) # Prior for mean recapture

# Likelihood
for (i in 1:nind){

# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){

# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t−1] * z[i,t−1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p[i,t−1] * z[i,t]
} #t

} #i
}
",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions = dim(CH)[2],

z = known.state.cjs(CH), x = winter)
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# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), mu = rnorm(1), sigma =

runif(1, 0, 5), beta = runif(1, −5, 5), mean.p = runif(1, 0, 1))}

# Parameters monitored
parameters <- c("mean.phi", "mean.p", "phi.est", "sigma2", "beta")

# MCMC settings
ni <- 20000
nt <- 6
nb <- 10000
nc <- 3

# Call WinBUGS from R (BRT 12 min)
cjs.cov <- bugs(bugs.data, inits, parameters, "cjs-cov-raneff.bug",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

In general, models with random effects are more difficult to fit, and we
need to run long Markov chains to achieve satisfactory convergence for
all parameters. The posterior distributions of the slope and the residual
environmental variation (temporal variation not explained by the covari-
ate) are shown in Fig. 7.4.

# Summarize posteriors
print(cjs.cov, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

mean.phi 0.707 0.050 0.611 0.676 0.705 0.736 0.805 1.012 1400

mean.p 0.403 0.032 0.343 0.381 0.403 0.424 0.467 1.002 1800

phi.est[1] 0.686 0.121 0.423 0.610 0.696 0.769 0.902 1.003 1200
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200

400

600

F
re

qu
en

cy

F
re

qu
en

cy

0

200

400

600

0

β s2

−2.0 −1.0 0.0 1.0 0.0 1.0 2.0 3.0

FIGURE 7.4 Posterior distributions of the covariate effect (slope parameter β) and of
environmental variability (the residual temporal variance σ2). Red lines indicate the values
used for simulating the data.
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phi.est[19] 0.681 0.120 0.427 0.603 0.690 0.764 0.902 1.003 950

sigma2 0.566 0.541 0.047 0.234 0.426 0.714 2.012 1.008 390

beta −0.422 0.308 −1.080 −0.600 −0.410 −0.226 0.160 1.006 1400

# Produce graph
par(mfrow = c(1, 2), las = 1)
hist(cjs.cov$sims.list$beta, nclass = 25, col = "gray", main = "",

xlab = expression(beta), ylab = "Frequency")
abline(v = −0.3, col = "red", lwd = 2)
hist(cjs.cov$sims.list$sigma2, nclass = 50, col = "gray", main = "",

xlab = expression(sigma^2), ylab = "Frequency", xlim=c(0, 3))
abline(v = 0.2, col = "red", lwd = 2)

7.5 MODELS WITH INDIVIDUAL VARIATION

So far we have modeled temporal effects, assuming identical survival
and recapture for all individuals. Now, we relax this assumption and
model individual heterogeneity. Thus, we model effects along the row
axis of the capture-history matrix. As with models for time effects, we
can model individual effects in different ways—individual effects can be
categorical or continuous, fixed or random, or latent or explained by mea-
sured covariates (compare with model Mh in Section 6.2). Moreover, indi-
vidual effects can be constant over time, or they may change over time.
Here, we only consider the simpler case, where they are constant over time.

7.5.1 Fixed Group Effects

We may specify fixed effects when we are interested in the estimates of
particular groups (e.g., sex) and if the number of groups is low, as it is
difficult to estimate the between-group variance with a small number of
groups. We define gi as a categorical variable with G levels (i.e., number of
groups) indicating the group membership. The model for survival with a
fixed group effect is

ϕi,t = βgðiÞ,

where index g(i) denotes the group g to which individual i belongs and
βg (g = 1…G) are the estimated fixed group effects. Because there are no
other effects in the model, we can model directly on the probability
scale, and the prior distribution ensures that the parameter estimates are
between 0 and 1.

We illustrate the model to estimate sex-specific survival and recapture
probabilities with simulated data of little owls. We first simulate two sepa-
rate capture–recapture data sets; one for males and another for females.
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Then we create the grouping variable g (named “group”) and merge the
two capture–recapture data sets.

# Define parameter values
n.occasions <- 12 # Number of capture occasions
marked <- rep(30, n.occasions−1) # Annual number of newly marked

individuals
phi.f <- rep(0.65, n.occasions−1) # Survival of females
p.f <- rep(0.6, n.occasions−1) # Recapture prob. of females
phi.m <- rep(0.8, n.occasions−1) # Survival of males
p.m <- rep(0.3, n.occasions−1) # Recapture prob. of males

# Define matrices with survival and recapture probabilities
PHI.F <- matrix(phi.f, ncol = n.occasions−1, nrow = sum(marked))
P.F <- matrix(p.f, ncol = n.occasions−1, nrow = sum(marked))
PHI.M <- matrix(phi.m, ncol = n.occasions−1, nrow = sum(marked))
P.M <- matrix(p.m, ncol = n.occasions−1, nrow = sum(marked))

# Simulate capture-histories
CH.F <- simul.cjs(PHI.F, P.F, marked)
CH.M <- simul.cjs(PHI.M, P.M, marked)

# Merge capture-histories by row
CH <- rbind(CH.F, CH.M)

# Create group variable
group <- c(rep(1, dim(CH.F)[1]), rep(2, dim(CH.M)[1]))

# Create vector with occasion of marking
get.first <- function(x) min(which(x!=0))
f <- apply(CH, 1, get.first)

Finally, we write the model in BUGS language and fit it to the data.

# Specify model in BUGS language
sink("cjs-group.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
phi[i,t] <- phi.g[group[i]]
p[i,t] <- p.g[group[i]]
} #t

} #i
for (u in 1:g){

phi.g[u] ~ dunif(0, 1) # Priors for group-specific
survival

p.g[u] ~ dunif(0, 1) # Priors for group-specific
recapture

}

# Likelihood
for (i in 1:nind){
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# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){

# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t−1] * z[i,t−1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p[i,t−1] * z[i,t]
} #t

} #i
}
",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions = dim(CH)[2],

z = known.state.cjs(CH), g = length(unique(group)), group = group)

# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), phi.g = runif(length

(unique(group)), 0, 1), p.g = runif(length(unique(group)), 0, 1))}

# Parameters monitored
parameters <- c("phi.g", "p.g")

# MCMC settings
ni <- 5000
nt <- 3
nb <- 2000
nc <- 3

# Call WinBUGS from R (BRT 2 min)
cjs.group <- bugs(bugs.data, inits, parameters, "cjs-group.bug",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

The parameter estimates are close to the values used to generate the data.

# Summarize posteriors
print(cjs.group, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
phi.g[1] 0.656 0.020 0.617 0.642 0.656 0.669 0.694 1.001 3000
phi.g[2] 0.796 0.018 0.760 0.784 0.796 0.808 0.831 1.002 1900
p.g[1] 0.599 0.029 0.541 0.578 0.599 0.619 0.654 1.002 1700
p.g[2] 0.325 0.021 0.285 0.311 0.324 0.339 0.368 1.002 1900

7.5.2 Random Group Effects

We may specify random group effects when we are interested in an
overall mean and the variability between groups. A typical example of
random group effects is provided by local populations, where we are
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interested in estimating spatial variation of survival (Grosbois et al., 2009).
Survival is then modeled as

logitðϕi,tÞ = βgðiÞ
βg � Normalðβ, σ2Þ,

where σ2 is the variance of logit survival between groups, βg are the random
group effects, and β is the overall mean. Note that we now use the logit link
function to ensure that the realized group-specific survival probabilities
(logit−1(βg)) are bound in the interval [0, 1].

Because most BUGS code is identical to that in Section 7.5.1, we just
show the part which needs modification:

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
logit(phi[i,t]) <- beta[group[i]]
p[i,t] <- mean.p
} #t

} #i
for (u in 1:g){

beta[u] ~ dnorm(mean.beta, tau)
phi.g[u] <- 1 / (1+exp(−beta[u])) # Back-transformed

group-specific survival
}

mean.beta ~ dnorm(0, 0.001) # Prior for logit of mean survival
mean.phi <- 1 / (1+exp(−mean.beta)) # Back-transformed mean survival
sigma ~ dunif(0, 10) # Prior for sd of logit of survival

variability
tau <- pow(sigma, −2)
mean.p ~ dunif(0, 1) # Prior for mean recapture

7.5.3 Individual Random Effects

As an extreme case of a random group effect, we could also consider
each individual as belonging to its own group. This model would not be
identifiable when groups are treated as fixed affects, but it is when we
treat groups as random effects. Conceptually, we imagine that there is
an average survival, around which there is individual-specific noise. To
specify individual random effects, we write

logitðϕi,tÞ = μ+ εi
εi � Normalð0, σ2Þ,

where σ2 is the variance of logit survival among individuals, and μ is the
overall mean logit survival. The interest of an analysis with individual
random effects may be in estimating the mean, the variance, or even the
realized survival “residuals” of each individual (sometimes called
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“frailty”; Cam et al., 2002). Such a model also provides the base for
modeling survival as a function of an individual covariate xi (e.g., size
of an individual). This model can be written as

logitðϕi,tÞ = μ+ βxi + εi

εi � Normalð0, σ2Þ,
where β is the slope of covariate x on logit survival.

Models with random individual variation in survival are particularly
important for the study of senescence (Cam et al., 2002). If individual varia-
tion is not included, senescence could easily be overlooked because a
decline with age may be offset by increasing proportions of high-quality
individuals in the population (Service, 2000; van de Pol and Verhulst,
2006). Sometimes, such amodelmay also be adopted for recapture probabil-
ities because they are likely to differ among individuals in a similar manner.

Capture–recapture data are often subject to overdispersion, which may be
due to a lack of independence among individuals (Lebreton et al., 1992).
Overdispersion can be detected with a goodness-of-fit test (Lebreton et al.,
1992; Choquet et al., 2001). If overdispersion is not corrected for, parameter
estimators tend to be unbiased, but their variances (e.g., standard errors) will
be too small (Anderson et al., 1994). The frequentist solution is to calculate a
variance inflation factor from the goodness-of-fit test that is called c-hat in
the capture–recapture literature, and to compute the true variance of the
estimates as the product of the apparent variance and c-hat. An analogous
Bayesian solution is to use a model with individual random effects (see
also chapter 14 in Kéry 2010 and Section 4.2). The advantage of the Bayesian
solution is the flexibility in specifying lack of independence in either survival
only, recapture only, or in both parameters.

We now simulate little owl data and analyze them. We assume mean
survival of 0.65 and individual variability with a variance of 0.5.

# Define parameter values
n.occasions <- 20 # Number of capture occasions
marked <- rep(30, n.occasions−1) # Annual number of newly marked

individuals
mean.phi <- 0.65
p <- rep(0.4, n.occasions−1)
v.ind <- 0.5

# Draw annual survival probabilities
logit.phi <- rnorm(sum(marked), qlogis(mean.phi), v.ind^0.5)
phi <- plogis(logit.phi)

# Define matrices with survival and recapture probabilities
PHI <- matrix(phi, ncol = n.occasions−1, nrow = sum(marked),

byrow = FALSE)
P <- matrix(p, ncol = n.occasions−1, nrow = sum(marked))
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# Simulate capture-histories
CH <- simul.cjs(PHI, P, marked)

# Create vector with occasion of marking
get.first <- function(x) min(which(x!=0))
f <- apply(CH, 1, get.first)

# Specify model in BUGS language
sink("cjs-ind-raneff.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
logit(phi[i,t]) <- mu + epsilon[i]
p[i,t] <- mean.p
} #t

} #i
for (i in 1:nind){

epsilon[i] ~ dnorm(0, tau)
}

mean.phi ~ dunif(0, 1) # Prior for mean survival
mu <- log(mean.phi / (1-mean.phi)) # Logit transformation
sigma ~ dunif(0, 5) # Prior for standard deviation
tau <- pow(sigma, −2)
sigma2 <- pow(sigma, 2)
mean.p ~ dunif(0, 1) # Prior for mean recapture

# Likelihood
for (i in 1:nind){

# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){

# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t-1] * z[i,t-1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p[i,t−1] * z[i,t]
} #t

} #i
}
",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions = dim(CH)[2],

z = known.state.cjs(CH))

# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), mean.phi = runif(1, 0, 1),

mean.p = runif(1, 0, 1), sigma = runif(1, 0, 2))}
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# Parameters monitored
parameters <- c("mean.phi", "mean.p", "sigma2")

# MCMC settings
ni <- 50000
nt <- 6
nb <- 20000
nc <- 3

# Call WinBUGS from R (BRT 73 min)
cjs.ind <- bugs(bugs.data, inits, parameters, "cjs-ind-raneff.bug",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

We need relatively long runs to reach satisfactory convergence. We
note that the random-effects distribution could also be truncated like
epsilon[i] ~ dnorm(0, tau)I(−15, 15) to improve mixing of the chains
(see Appendix 1, tipp 16). The posterior distributions of the two para-
meters, mean survival and variability among individuals, show good
agreement with the simulated parameters (Fig. 7.5).

# Summarize posteriors
print(cjs.ind, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
mean.phi 0.640 0.026 0.587 0.623 0.641 0.658 0.688 1.001 15000
mean.p 0.410 0.021 0.368 0.396 0.410 0.424 0.451 1.001 13000
sigma2 0.586 0.244 0.176 0.410 0.560 0.739 1.132 1.012 1800

# Produce graph
par(mfrow = c(1, 2), las = 1)
hist(cjs.ind$sims.list$mean.phi, nclass = 25, col = "gray", main = "",

xlab = expression(bar(phi)), ylab = "Frequency")
abline(v = mean.phi, col = "red", lwd = 2)
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FIGURE 7.5 Posterior distributions of mean survival and of the individual variance in
survival. Red lines indicate the values used for data simulation.
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hist(cjs.ind$sims.list$sigma2, nclass = 15, col = "gray", main = "",
xlab = expression(sigma^2), ylab = "Frequency", xlim = c(0, 3))

abline(v = v.ind, col = "red", lwd = 2)

If we wanted to estimate survival as a function of an individual covari-
ate x, then we just have to adapt a small part in the code:

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
logit(phi[i,t]) <- mu + beta*x[i] + epsilon[i]
p[i,t] <- mean.p
} #t

} #i
for (i in 1:nind){

epsilon[i] ~ dnorm(0, tau)
}

mean.phi ~ dunif(0, 1) # Prior for mean survival
mu <- log(mean.phi / (1-mean.phi)) # Logit transformation
beta ~ dnorm(0, 0.001) # Prior for covariate slope
sigma ~ dunif(0, 5) # Prior for standard deviation
tau <- pow(sigma, −2)
sigma2 <- pow(sigma, 2)
mean.p ~ dunif(0, 1) # Prior for mean recapture

Of course, we also have to give initial values for the new stochastic
node beta, to include the covariate x in bugs.data, and to monitor beta.

Individual covariates may also change over time, such as, for example,
body mass. The difficulty is that the covariate is unknown at occasions
when the individual was not captured. Estimating the effects of individual
time-varying covariates on survival is a challenge and different
approaches have been proposed (Bonner and Schwarz, 2006; Catchpole
et al., 2008; King et al., 2010).

7.6 MODELS WITH TIME AND GROUP EFFECTS

7.6.1 Fixed Group and Time Effects

Clearly we can combine the two concepts introduced in Sections 7.4 and
7.5 and model structure both along the time and along the individual axis of
the capture-history matrix. The changes needed in the model code are merely
an explicit GLM formulation of effects. This offers great flexibility as we can
consider interacting or additive time and group effects, and we can treat
either or both as random. The different combinations are straightforward
and easy to implement, so we now focus in detail on one particular model
that is often used, an additive model with fixed time and group effects.
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Consider two groups of individuals (e.g., males and females) whose
survival varies in parallel over time. Denoting sex by g (for group) and
time by t, we can call this model {ϕg+t, pg}. Using the GLM formulation,
we specify the survival model as

logitðϕi,tÞ = βgðiÞ + γt,

where βg is the effect of the sex g of individual i and γt are the fixed time
effects. Written in this way, the model is overparameterized. We must
either specify the βg as the survival probabilities of the first year, and
thus set γ1 = 0, or we specify that γt are the survival probabilities of the
first group and set β1 = 0. Consequently, β2 is then the difference in
survival between the first and the second group. Such constraints must
be specified in the BUGS model code, and are usually called corner con-
straints (Ntzoufras, 2009; Kéry, 2010).

For the simulation example, we assume constant recapture probabilities
that are higher for females than for males. We simulate two capture-
history data sets, one for males and one for females, merge them, create
a group variable, and finally fit the model.

# Define parameter values
n.occasions <- 12 # Number of capture occasions
marked <- rep(50, n.occasions−1) # Annual number of newly marked

individuals
phi.f <- c(0.6, 0.5, 0.55, 0.6, 0.5, 0.4, 0.6, 0.5, 0.55, 0.6, 0.7)
p.f <- rep(0.6, n.occasions−1)
diff <- 0.5 # Difference between male and female survival on logit

scale
phi.m <- plogis(qlogis(phi.f) + diff)
p.m <- rep(0.3, n.occasions−1)

# Define matrices with survival and recapture probabilities
PHI.F <- matrix(rep(phi.f, sum(marked)), ncol = n.occasions−1,

nrow = sum(marked), byrow = TRUE)
P.F <- matrix(rep(p.f, sum(marked)), ncol = n.occasions−1,

nrow = sum(marked), byrow = TRUE)
PHI.M <- matrix(rep(phi.m, sum(marked)), ncol = n.occasions−1,

nrow = sum(marked), byrow = TRUE)
P.M <- matrix(rep(p.m, sum(marked)), ncol = n.occasions−1,

nrow = sum(marked), byrow = TRUE)

# Simulate capture-histories
CH.F <- simul.cjs(PHI.F, P.F, marked)
CH.M <- simul.cjs(PHI.M, P.M, marked)

# Merge capture-histories
CH <- rbind(CH.F, CH.M)

# Create group variable
group <- c(rep(1, dim(CH.F)[1]), rep(2, dim(CH.M)[1]))
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# Create vector with occasion of marking
get.first <- function(x) min(which(x!=0))
f <- apply(CH, 1, get.first)

The next piece of code writes the model in BUGS language, and the
remaining R code fits the model:

# Specify model in BUGS language
sink("cjs-add.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
logit(phi[i,t]) <- beta[group[i]] + gamma[t]
p[i,t] <- p.g[group[i]]
} #t

} #i
# for survival parameters
for (t in 1:(n.occasions−1)){

gamma[t] ~ dnorm(0, 0.01)I(−10, 10) # Priors for time
effects

phi.g1[t] <- 1 / (1+exp(−gamma[t])) # Back-transformed
survival of males

phi.g2[t] <- 1 / (1+exp(−gamma[t]-beta[2])) # Back-transformed
survival of females

}
beta[1] <- 0 # Corner constraint
beta[2] ~ dnorm(0, 0.01)I(−10, 10) # Prior for difference in male

and female survival
# for recapture parameters
for (u in 1:g){

p.g[u] ~ dunif(0, 1) # Priors for group-spec.
recapture

}

# Likelihood
for (i in 1:nind){

# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){

# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t−1] * z[i,t−1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p[i,t−1] * z[i,t]
} #t

} #i
}

7.6 MODELS WITH TIME AND GROUP EFFECTS 201



",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions = dim(CH)[2],

z = known.state.cjs(CH), g = length(unique(group)), group = group)

# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), gamma =

rnorm(n.occasions−1), beta = c(NA, rnorm(1)), p.g = runif(length
(unique(group)), 0, 1))}

# Parameters monitored
parameters <- c("phi.g1", "phi.g2", "p.g", "beta")

# MCMC settings
ni <- 5000
nt <- 3
nb <- 2000
nc <- 3

# Call WinBUGS from R (BRT 7 min)
cjs.add <- bugs(bugs.data, inits, parameters, "cjs-add.bug",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

# Summarize posteriors
print(cjs.add, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
phi.g1[1] 0.614 0.088 0.451 0.554 0.611 0.672 0.789 1.002 2800
phi.g1[2] 0.461 0.065 0.343 0.416 0.459 0.504 0.592 1.001 2800
[...]
phi.g2[10] 0.752 0.055 0.642 0.716 0.753 0.790 0.859 1.010 260
phi.g2[11] 0.823 0.079 0.683 0.770 0.818 0.868 0.999 1.030 90
p.g[1] 0.567 0.034 0.499 0.545 0.567 0.590 0.633 1.006 350
p.g[2] 0.318 0.022 0.277 0.302 0.317 0.333 0.361 1.005 450
beta[2] 0.603 0.127 0.360 0.515 0.605 0.687 0.848 1.008 300

# Figure of male and female survival
lower.f <- upper.f <- lower.m <- upper.m <- numeric()
for (t in 1:(n.occasions−1)){

lower.f[t] <- quantile(cjs.add$sims.list$phi.g1[,t], 0.025)
upper.f[t] <- quantile(cjs.add$sims.list$phi.g1[,t], 0.975)
lower.m[t] <- quantile(cjs.add$sims.list$phi.g2[,t], 0.025)
upper.m[t] <- quantile(cjs.add$sims.list$phi.g2[,t], 0.975)
}

plot(x=(1:(n.occasions−1))-0.1, y = cjs.add$mean$phi.g1, type = "b",
pch = 16, ylim = c(0.2, 1), ylab = "Survival probability",
xlab = "Year", bty = "n", cex = 1.5, axes = FALSE)

axis(1, at = 1:11, labels = rep(NA,11), tcl = −0.25)
axis(1, at = seq(2,10,2), labels = c("2","4","6","8","10"))
axis(2, at = seq(0.2, 1, 0.1), labels = c("0.2", NA, "0.4", NA, "0.6", NA,

"0.8", NA, "1.0"), las = 1)
segments((1:(n.occasions−1))-0.1, lower.f, (1:(n.occasions−1))−0.1,

upper.f)
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points(x = (1:(n.occasions−1))+0.1, y = cjs.add$mean$phi.g2,
type = "b", pch = 1, lty = 2, cex = 1.5)

segments((1:(n.occasions−1))+0.1, lower.m, (1:(n.occasions−1))+0.1,
upper.m)

The posterior means of male and female survival estimated under the
additive model are shown in Fig. 7.6. Survival of the two sexes varies in
parallel over time, but on the logit scale. Hence, on the probability scale
the two curves are not parallel—as the difference becomes smaller the
closer the estimates are to 1 or 0.

To fit a model with an interaction between sex and time (i.e., survival of
each sex varies independently from each other over time), we would
change the “Priors and constraints” part of the model as follows:

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
phi[i,t] <- eta.phi[group[i],t]
p[i,t] <- p.g[group[i]]
} #t

} #i
# for survival parameters
for (u in 1:g){

for (t in 1:(n.occasions−1)){
eta.phi[u,t] ~ dunif(0, 1) # Prior for time and group-spec.
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FIGURE 7.6 Posterior means (with 95% CRIs) of male (open circles) and female survival
(closed symbols) under the additive model.
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} #t
} #g

# for recapture parameters
for (u in 1:g){

p.g[u] ~ dunif(0, 1) # Priors for group-spec. recapture
}

7.6.2 Fixed Group and Random Time Effects

We may combine fixed group and random time effects to estimate tem-
poral variability of survival (or recapture) in each group separately. As for
the interacting model before, such a model would assume that the tem-
poral variability of each group is independent of that in the other group(s).

logitðϕi,tÞ = μgðiÞ + εgðiÞ,t
εg,t �Normalð0, σ2gÞ,

where μg are the group-specific means and σ2g the group-specific temporal
variances. The model code again only needs changes to the “Priors and
constraints” part and looks like:

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
logit(phi[i,t]) <- eta.phi[group[i],t]
p[i,t] <- p.g[group[i]]
} #t

} #i
# for survival parameters
for (u in 1:g){

for (t in 1:(n.occasions−1)){
eta.phi[u,t] <- mu.phi[u] + epsilon[u,t]
epsilon[u,t] ~ dnorm(0, tau[u])
} #t
mean.phi[u] ~ dunif(0, 1) # Priors on mean group-spec.

survival
mu.phi[u] <- log(mean.phi[u] / (1−mean.phi[u]))
sigma[u] ~ dunif(0, 10) # Priors for group-spec. sd
tau[u] <- pow(sigma[u], −2)
sigma2[u] <- pow(sigma[u], 2)

} #g
# for recapture parameters
for (u in 1:g){

p.g[u] ~ dunif(0,1) # Priors for group-spec.
recapture

}

An alternative way to write the same model is to treat the residuals as a
realization from a multivariate normal distribution

εg,t � MVNð0,Σg,tÞ,
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where Σg,t is the variance–covariance matrix that describes the temporal
variance of and the temporal covariance among groups. As we assume
independence among groups, the covariance between groups is zero,
and the matrix for two groups is as follows:

Σg,t =
σ2g1 0
0 σ2g2

 !
:

Temporal variability in survival is usually induced by environmental
factors (e.g., weather, food supply). As such, we do not expect survival
of groups of individuals from the same population (e.g., sexes or age
classes) to vary independently over time. Therefore, we may want to fit
a sort of additive model, but where the temporal variance is treated as
random. This can be done by considering a correlation of the temporal
variability of each group, that is treating two sets of random effects as
correleted (Link and Barker, 2005). The advantage of such a model is
that (1) the temporal correlation is interpretable as a biological parameter
(the extent to which survival varies in common among groups) and (2) the
estimates of temporal variability become more precise because informa-
tion is shared among groups. The temporal correlation of parameters
also needs to be included in stochastic population models. Generally,
the population growth rate becomes smaller with increasing positive cor-
relation between survival parameters (Caswell, 2001).

With two groups, this model is written as follows:

logitðϕi,tÞ = μgðiÞ + εgðiÞ,t

εg,t � MVNð0,Σg,tÞ

Σg,t =
σ2g1 ρσg1σg2

ρσg1σg2 σ2g2

 !
,

where ρ is the temporal correlation coefficient between the two groups.
Note that the correlation coefficient between two variables g1 and g2 is

ρ =
covðg1, g2Þffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2g1σ
2
g2

q , and thus Σg,t could also be written as

Σg,t =
σ2g1 covðg1, g2Þ

covðg1, g2Þ σ2g2

 !
:

Estimating correlation coefficients (or covariances) is challenging, in
particular, if there are more than two parameters. This is because several
conditions must be met. For example, all correlations must be in the inter-
val –1 and 1, and they are jointly constrained in a complicated way.
A standard choice for the prior of the elements of matrix Σ is the inverse
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Wishart distribution, which ensures that the estimated parameters have
the desired properties.

The inverse Wishart distribution (IW(R, df )) has two parameters: the scale
matrix (R), with dimension K × K for Kmodeled parameters, and the degrees
of freedom (df ). Depending on the choice of these parameters, we incorpo-
rate into the analysis prior information about the correlation coefficients
or about the variances (Link and Barker, 2005; Gelman and Hill, 2007). For
a uniform prior on the correlation coefficients, we must fix df = K + 1. The
values of the scale matrix R have an effect on the priors for the variances;
large values of R set the prior means of the variances to large values. Because
the specification of the priors for matrix Σ is difficult, we recommend con-
ducting sensitivity analyses. The BUGS code to fit this model is as follows:

# Specify model in BUGS language
sink("cjs-temp-corr.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
logit(phi[i,t]) <- eta.phi[t,group[i]]
p[i,t] <- p.g[group[i]]
} #t

} #i
# for survival parameters
for (t in 1:(n.occasions−1)){

eta.phi[t,1:g] ~ dmnorm(mu.phi[], Omega[,])
} #t

for (u in 1:g){
mean.phi[u] ~ dunif(0, 1) # Priors on mean group-spec. survival
mu.phi[u] <- log(mean.phi[u] / (1−mean.phi[u]))
} #g

Omega[1:g, 1:g] ~ dwish(R[,], df) # Priors for variance-covariance
matrix

Sigma[1:g, 1:g] <- inverse(Omega[,])

# for recapture parameters
for (u in 1:g){

p.g[u] ~ dunif(0, 1) # Priors for group-spec. recapture
}

# Likelihood
for (i in 1:nind){

# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){

# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t−1] * z[i,t−1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
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mu2[i,t] <- p[i,t−1] * z[i,t]
} #t

} #i
}
",fill = TRUE)
sink()

The parameters of the inverse Wishart distribution (R, df ) are provided
as data. Here, we choose parameters that result in an uninformative prior
for the correlation.

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions = dim(CH)[2],

z = known.state.cjs(CH), g = length(unique(group)), group = group,
R = matrix(c(5, 0, 0, 1), ncol = 2), df = 3)

# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), p.g = runif(length

(unique(group)), 0, 1), Omega = matrix(c(1, 0, 0, 1), ncol = 2))}

# Parameters monitored
parameters <- c("eta.phi", "p.g", "Sigma", "mean.phi")

# MCMC settings
ni <- 5000
nt <- 3
nb <- 2000
nc <- 3

# Call WinBUGS from R (BRT 5 min)
cjs.corr <- bugs(bugs.data, inits, parameters, "cjs-temp-corr.bug",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

# Summarize posteriors
print(cjs.corr, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

eta.phi[1,1] 0.457 0.391 −0.257 0.190 0.434 0.688 1.304 1.003 870

eta.phi[1,2] 0.794 0.384 0.103 0.537 0.770 1.020 1.605 1.001 3000

[ ... ]
eta.phi[11,1] 0.945 0.445 0.219 0.647 0.892 1.194 1.995 1.010 420

eta.phi[11,2] 0.800 0.363 0.165 0.554 0.762 1.031 1.546 1.002 1100

p.g[1] 0.572 0.032 0.511 0.550 0.572 0.594 0.636 1.002 1600

p.g[2] 0.327 0.023 0.283 0.311 0.327 0.343 0.375 1.003 970

Sigma[1,1] 0.790 0.391 0.323 0.523 0.704 0.957 1.793 1.001 3000

Sigma[1,2] 0.073 0.156 −0.197 −0.014 0.057 0.146 0.440 1.003 3000

Sigma[2,1] 0.073 0.156 −0.197 −0.014 0.057 0.146 0.440 1.003 3000

Sigma[2,2] 0.243 0.154 0.082 0.144 0.205 0.295 0.631 1.002 1100

mean.phi[1] 0.549 0.067 0.419 0.504 0.549 0.594 0.678 1.002 1400

mean.phi[2] 0.669 0.039 0.593 0.644 0.669 0.694 0.749 1.001 2200

Σ11 (note that this is sigma[1,1] in the table above) is the temporal
variance of the logit male survival, and Σ22 is that for logit female survival.
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The elements Σ12 and Σ21 are the temporal covariances of logit male and
logit female survival. This quantity may not be easy to interpret, and we
may want to compute the temporal correlation of male and female survival:

corr.coef <- cjs.corr$sims.list$Sigma[,1,2] / sqrt(cjs.corr$sims.
list$Sigma[,1,1] * cjs.corr$sims.list$Sigma[,2,2])

The mean and the credible interval of the correlation coefficient (ρ) are
0.16 (−0.43, 0.67), and the probability that ρ > 0 is 0.71. As usual these
quantities are computed from the posterior distribution of corr.coef.

7.7 MODELS WITH AGE EFFECTS

Survival often changes with age. For most species, survival in their first
year of life is lower than later. In addition, with senescence, survival may
decline in older age classes. Therefore, we might want to estimate different
survival parameters for each age class. To model age effects on survival,
individuals must be aged when they are first captured, although recently
developed models allow relaxing this assumption for some of the indivi-
duals (Pledger et al., 2009). We create a matrix xi,t, indicating the age at
each time t for each individual i. For example, assume a study over
6 years and two individuals that are first captured at the second occasion.
The elements of matrix xwould then be [NA 1 2 3 4] for the first individual
that was born at the second occasion and [NA 2 3 4 5] for the second
individual that was 1-year old at the second occasion. We can then
model survival as a function of age x as follows:

logitðϕi,tÞ = μ+ βxi,t + εi

εi � Normalð0, σ2Þ:
This model can be adapted very flexibly. First, we may include an indi-

vidual random effect (εi) as already shown above. Inclusion of individual
“frailty” can be important, if we aim at estimating senescence. Second,
we may assume that survival changes linearly with age (as in the formula
above), that it changes nonlinearly with age (e.g., Gaillard et al., 2004), or
that x is a categorical variable. The last is perhaps the most frequent type of
model for age effects adopted in practice. If we distinguish only two age
classes (i.e., separate survival during the first year of life vs. later), the ele-
ments of matrix x would become [NA 1 2 2 2] for the first individual above
and [NA 2 2 2 2] for the second individual. Finally, one might include time
effects in addition to age effects. A general formation might then be

logitðϕi,tÞ = βxði,tÞ + εi

εi � Normalð0, σ2Þ,

7. CORMACK–JOLLY–SEBER MODELS208



where βx(i,t) are the effects of age class x of individual i at time t and εi are
individual frailty terms. Note that a principal difference between the first
and the second model is that the age variable x is continuous in the first
but categorical in the second model.

To illustrate the model, we consider a simple example, in which juve-
nile and adult little owls are marked. We assume that survival in the first
year of life (from age 0 to age 1 year) is different from survival in subse-
quent age classes (from age 1 year onward). Thus, we need a model with
two age classes for survival. We simulate data first, by creating two data
sets, one for individuals marked as juveniles, and one for individuals
marked as adults. We then construct matrix x for each age class and
merge the two data sets and matrices (x).

# Define parameter values
n.occasions <- 10 # Number of capture occasions
marked.j <- rep(200, n.occasions−1) # Annual number of newly marked

juveniles
marked.a <- rep(30, n.occasions−1) # Annual number of newly marked

adults
phi.juv <- 0.3 # Juvenile annual survival
phi.ad <- 0.65 # Adult annual survival
p <- rep(0.5, n.occasions−1) # Recapture
phi.j <- c(phi.juv, rep(phi.ad, n.occasions−2))
phi.a <- rep(phi.ad, n.occasions−1)

# Define matrices with survival and recapture probabilities
PHI.J <- matrix(0, ncol = n.occasions−1, nrow = sum(marked.j))
for (i in 1:length(marked.j)){

PHI.J[(sum(marked.j[1:i])-marked.j[i]+1):sum(marked.j[1:i]),
i:(n.occasions−1)] <- matrix(rep(phi.j[1:(n.occasions−i)],
marked.j[i]), ncol = n.occasions−i, byrow = TRUE)

}
P.J <- matrix(rep(p, sum(marked.j)), ncol = n.occasions−1,

nrow = sum(marked.j), byrow = TRUE)
PHI.A <- matrix(rep(phi.a, sum(marked.a)), ncol = n.occasions−1,

nrow = sum(marked.a), byrow = TRUE)
P.A <- matrix(rep(p, sum(marked.a)), ncol = n.occasions−1,

nrow = sum(marked.a), byrow = TRUE)

# Apply simulation function
CH.J <- simul.cjs(PHI.J, P.J, marked.j)
CH.A <- simul.cjs(PHI.A, P.A, marked.a)

# Create vector with occasion of marking
get.first <- function(x) min(which(x!=0))
f.j <- apply(CH.J, 1, get.first)
f.a <- apply(CH.A, 1, get.first)

# Create matrices X indicating age classes
x.j <- matrix(NA, ncol = dim(CH.J)[2]-1, nrow = dim(CH.J)[1])
x.a <- matrix(NA, ncol = dim(CH.A)[2]-1, nrow = dim(CH.A)[1])
for (i in 1:dim(CH.J)[1]){

7.7 MODELS WITH AGE EFFECTS 209



for (t in f.j[i]:(dim(CH.J)[2]-1)){
x.j[i,t] <- 2
x.j[i,f.j[i]] <- 1
} #t

} #i
for (i in 1:dim(CH.A)[1]){

for (t in f.a[i]:(dim(CH.A)[2]−1)){
x.a[i,t] <- 2
} #t

} #i

Next, we combine the two data sets into a common set.

CH <- rbind(CH.J, CH.A)
f <- c(f.j, f.a)
x <- rbind(x.j, x.a)

Finally, we define the model in BUGS language and fit it to the data.
We treat age as a categorical variable, so we use the identity link.

# Specify model in BUGS language
sink("cjs-age.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
phi[i,t] <- beta[x[i,t]]
p[i,t] <- mean.p
} #t

} #i
for (u in 1:2){

beta[u] ~ dunif(0, 1) # Priors for age-specific survival
}

mean.p ~ dunif(0, 1) # Prior for mean recapture

# Likelihood
for (i in 1:nind){

# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){

# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t−1] * z[i,t−1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p[i,t−1] * z[i,t]
} #t

} #i
}
",fill = TRUE)
sink()
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# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions =
dim(CH)[2], z = known.state.cjs(CH), x = x)

# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), beta = runif(2, 0, 1),
mean.p = runif(1, 0, 1))}

# Parameters monitored
parameters <- c("beta", "mean.p")

# MCMC settings
ni <- 2000
nt <- 3
nb <- 1000
nc <- 3

# Call WinBUGS from R (BRT 3 min)
cjs.age <- bugs(bugs.data, inits, parameters, "cjs-age.bug", n.chains =

nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

The model runs slowly, but convergence is achieved after only 1000
samples. The parameter estimates are close to the parameters used for
the simulations.

print(cjs.age, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
beta[1] 0.317 0.015 0.287 0.306 0.318 0.328 0.347 1.002 880
beta[2] 0.666 0.015 0.638 0.657 0.667 0.676 0.695 1.001 1000
mean.p 0.486 0.019 0.452 0.473 0.486 0.499 0.525 1.005 410

It is straightforward to include other models for the age effect. Depend-
ing on the models that we want to fit, matrix x needs to be adapted. If
we want to model survival as a linear function of age, x must indicate
the true age in each year. If the goal is to treat age as a categorical vari-
able, x must include as many categories as we want to distinguish (e.g.,
two above). Then the GLM, which relates survival to x, needs to be
adapted. For example, if survival is modeled as a linear function of age,
we first create x and only include into the analysis individuals marked as
juveniles.

# Create matrix X indicating age classes
x <- matrix(NA, ncol = dim(CH)[2]−1, nrow = dim(CH)[1])
for (i in 1:dim(CH)[1]){

for (t in f[i]:(dim(CH)[2]−1)){
x[i,t] <- t−f[i]+1
} #t

} #i
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As usual, the BUGS model needs a few changes in the “Priors and
constraints” part:

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
logit(phi[i,t]) <- mu + beta*x[i,t]
p[i,t] <- mean.p
} #t

} #i
mu ~ dnorm(0, 0.01) # Prior for mean of logit survival
beta ~ dnorm(0, 0.01) # Prior for slope parameter
for (i in 1:(n.occasions−1)){

phi.age[i] <- 1 / (1+exp(−mu −beta*i)) # Logit back-transformation
}

mean.p ~ dunif(0, 1) # Prior for mean recapture

Age effects can also be combined with time effects in a very similar way
as we have seen with group effects (see Section 7.6). Models can be speci-
fied in which survival of the defined age classes vary independently from
each other across time, in which the temporal pattern of the age classes is
additive, or in which only survival of one age class is time-dependent.
Models with random time effects are also useful, allowing the temporal
variability of survival of each age class to be modeled independently, or
in which the temporal correlation is estimated. It is also possible to con-
sider cohort effects (Reid et al., 2003), that is, the survival of individuals
born in one cohort (year) is different from the survival of individuals born
in another cohort. This requires that we define a variable indicating the
cohort for each individual. In fact, for individuals that are young when
marked, our vector f already includes this information. Survival is then
modeled as a function of f, we may consider it to be fixed or random,
and we can combine it with additional time and/or age effects. Care
must be taken with model specification because a model with cohort x
time interaction is the same as a model with age x time interaction or
one with cohort x age interaction.

7.8 IMMEDIATE TRAP RESPONSE IN RECAPTURE
PROBABILITY

One assumption of standard capture–recapture models is that all
marked animals alive and available for capture at a given occasion have
the same capture probability. Sometimes, this assumption is violated in a
very specific way, namely when individuals captured at time t − 1 have a
different recapture probability at time t than individuals not captured at
time t − 1. This is called immediate trap response (see also Section 6.2.3).
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If recapture probability at time t for individuals captured at t− 1 is higher
than for individuals not captured at t− 1, this is “trap-happiness” and if
recapture probability is lower, then it is called “trap-shyness”. Trap-
happiness can occur if baited traps are used, and trap-shyness can occur
if the interval between capture occasions is short (Pradel, 1993). These
effects may also be induced by the sampling method and not reflect a beha-
vioral change of the individuals. However, trap response must be modeled;
otherwise, survival estimates will be biased. To account for immediate trap
response, a multistate model can be used (Gimenez et al., 2003; Schaub
et al., 2009; Appendix 2.2), but here we will use a single-state model and
model recapture as a function of whether or not an individual was captured
at the preceding occasion. We need, therefore, to construct a matrix m that
contains this information. The element of m for individual i at time t takes
value 1 if individual i was captured at t− 1, and value 2 otherwise. The
recapture probability is then modeled as

pi,t = βmði,tÞ,

where βm takes two values, depending on whether mi,t is 1 or 2. We may
also include additive time effects and use the logit link function,

logitðpi,tÞ = βmði,tÞ + γt:

The model with interaction between time and behavioral response is
parameter-redundant (Gimenez et al., 2003).

Simulating such data is best done with a multistate model (see Appen-
dix 2.2). For illustration, we imagine that we wish to estimate survival of
red-backed shrikes (Fig. 7.7), a beautiful bird species of hedgerows. We
catch adults during the breeding season, mark them with color rings to
facilitate resighting in subsequent years, and survey all potential breeding
territories each year. Typically, we focus on breeding territories that were
occupied in previous years. If time allows, we search for other, newly estab-
lished territories. Thus, marked individuals that survive and return to their
territory have a higher chance of being resighted, while individuals that
establish new territories are less likely to be found. However, once they are
found, their chances of being resighted in the next year increase. Such a sam-
pling protocol, which is not uncommon in studies of color-marked birds,
induces a “trap-happy effect” which biases survival unless accounted for.
For data simulation, we assume survival ϕ = 0.55 and resighting probabilities
pss = 0.75 following a sighting in the preceding year and pns = 0.35 otherwise.

# Import data
CH <- as.matrix(read.table(file = "trap.txt", sep = " "))

# Compute vector with occasion of first capture
get.first <- function(x) min(which(x!=0))
f <- apply(CH, 1, get.first)
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# Create matrix m indicating when an individual was captured
m <- CH[,1:(dim(CH)[2]−1)]
u <- which(m==0)
m[u] <- 2

The capture-histories of the first four individuals are as follows:

1 1 0 0 0 0 0 0
1 0 0 0 0 0 0 0
1 1 0 0 1 1 1 0
1 1 0 1 1 0 1 0

and the corresponding matrix m for these individuals is

1 1 2 2 2 2 2
1 2 2 2 2 2 2
1 1 2 2 1 1 1
1 1 2 1 1 2 1

Here a 1 denotes that an individual was captured at the preceding occa-
sion, and a 2 denotes that it was not captured at the preceding occasion.
Matrix m has as many columns as there are recapture parameters, thus one
fewer than the total number of capture occasions.

FIGURE 7.7 Male red-backed shrike (Lanius collurio) feeding a fledgling (Photograph by
D. Studler).
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The BUGS code to fit the trap-response model is as follows:

# Specify model in BUGS language
sink("cjs-trap.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
phi[i,t] <- mean.phi
p[i,t] <- beta[m[i,t]]
} #t

} #i
mean.phi ~ dunif(0, 1) # Prior for mean survival
for (u in 1:2){

beta[u] ~ dunif(0, 1) # Priors for recapture
}

# Likelihood components
for (i in 1:nind){

# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){

# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t−1] * z[i,t−1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p[i,t−1] * z[i,t]
} #t

} #i
}
",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions =

dim(CH)[2], z = known.state.cjs(CH), m = m)

# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), mean.phi = runif(1, 0,

1), beta = runif(2, 0, 1))}

# Parameters monitored
parameters <- c("mean.phi", "beta")

# MCMC settings
ni <- 20000
nt <- 3
nb <- 10000
nc <- 3
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# Call WinBUGS from R (BRT 1 min)
cjs.trap <- bugs(bugs.data, inits, parameters, "cjs-trap.bug",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

The estimated parameters are close to the parameters used for the
simulation.

print(cjs.trap, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
mean.phi 0.567 0.076 0.462 0.515 0.552 0.602 0.763 1.006 2400
beta[1] 0.756 0.091 0.547 0.701 0.770 0.823 0.897 1.006 2700
beta[2] 0.379 0.207 0.063 0.210 0.359 0.527 0.814 1.003 4500

This approach is again very flexible and can be extended easily. For
example, if an individual may be captured more than once during an occa-
sion, those captured more may have a higher capture probability. By
including the information about how many times an individual was cap-
tured, we can adjust for this sort of capture heterogeneity (Fletcher, 1994).
The matrix m then contains the number of times an individual is caught at
an occasion, and recapture is modeled as a function of m.

7.9 PARAMETER IDENTIFIABILITY

In principle, we are quite free to specify any among a large number of
models, especially when using BUGS. However, there is no guarantee that
all parameters in a fitted model are indeed identified, that is, can be esti-
mated. In fact, it is common that some parameters are not identifiable.
There are two kinds of nonidentifiability: intrinsic and extrinsic.
A model has intrinsically identifiable parameters if the same likelihood
for the data cannot be obtained by a smaller number of parameters,
while parameter-redundant models (those with at least one unidentified
parameter) can be expressed in terms of fewer than the original number
of parameters (Catchpole and Morgan, 1997). Extrinsic nonidentifiability
refers to the situation where a parameter should be identifiable given the
structure of a model but is not because the particular data set is insuffi-
cient in some regard. Thus, intrinsic nonidentifiability is a feature of a
model while extrinsic nonidentifiability is a feature of a data set. Intrinsic
nonidentifiability of models can be studied without data using symbolic
algebra (Catchpole and Morgan, 1997; Catchpole et al., 2001; Gimenez
et al., 2003, 2004) or the analysis of “perfect” data (analytic-numeric
method; Burnham et al., 1987), while extrinsic nonidentifiability is best
studied using simulation (e.g., Schaub et al., 2004a; Schaub, 2009; Bailey
et al., 2010). Of course, intrinsic and extrinsic nonidentifiability may occur
together for a particular model and data set.
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In the Bayesian framework, the topic of nonidentifiability is slightly
different. Because the posterior is a combination of the likelihood and
the prior, the posterior is defined (provided that the prior is proper;
Gelman et al., 2004). However, if the information in the data is very low
for a particular parameter (i.e., there is extrinsic nonidentifiability) or if the
likelihood surface is completely flat for a parameter (intrinsic nonidentifia-
bility), then the posterior will simply reflect the prior for that parameter.
Therefore, a prior sensitivity analysis can give insights into the identifia-
bility of a parameter. Gimenez et al. (2009b) developed an approach to
assess parameter identifiability based on this idea. Using flat priors for
parameters, they compared the overlap between the prior and the poster-
ior. If the overlap between the two distributions is large, a parameter is
weakly identifiable.

Here, we illustrate this with a well-known example. In the classical,
fully time-dependent CJS model {ϕt, pt}, the last survival and the last
recapture probability are not identifiable—it is only possible to estimate
the product of the two (Lebreton et al., 1992). Thus, this is an intrinsic iden-
tifiability problem. In the following example, we fit the model {ϕt, pt} to the
data and use flat priors for all parameters. We then inspect the posterior
and the prior of some survival and recapture parameters.

# Define parameter values
n.occasions <- 12 # Number of capture occasions
marked <- rep(30, n.occasions−1) # Annual number of newly marked

individuals
phi <- c(0.6, 0.5, 0.55, 0.6, 0.5, 0.4, 0.6, 0.5, 0.55, 0.6, 0.7)
p <- c(0.4, 0.65, 0.4, 0.45, 0.55, 0.68, 0.66, 0.28, 0.55, 0.45, 0.35)

# Define matrices with survival and recapture probabilities
PHI<- matrix(phi, ncol = n.occasions−1, nrow = sum(marked), byrow = TRUE)
P <- matrix(p, ncol = n.occasions−1, nrow = sum(marked), byrow = TRUE)

# Simulate capture-histories
CH <- simul.cjs(PHI, P, marked)

# Create vector with occasion of marking
get.first <- function(x) min(which(x!=0))
f <- apply(CH, 1, get.first)

# Specify model in BUGS language
sink("cjs-t-t.bug")
cat("
model {

# Priors and constraints
for (i in 1:nind){

for (t in f[i]:(n.occasions−1)){
phi[i,t] <- phi.t[t]
p[i,t] <- p.t[t]
} #t

} #i
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for (t in 1:(n.occasions−1)){
phi.t[t] ~ dunif(0, 1) # Priors for time-spec. survival
p.t[t] ~ dunif(0, 1) # Priors for time-spec. recapture
}

# Likelihood
for (i in 1:nind){

# Define latent state at first capture
z[i,f[i]] <- 1
for (t in (f[i]+1):n.occasions){

# State process
z[i,t] ~ dbern(mu1[i,t])
mu1[i,t] <- phi[i,t−1] * z[i,t−1]
# Observation process
y[i,t] ~ dbern(mu2[i,t])
mu2[i,t] <- p[i,t−1] * z[i,t]
} #t

} #i
}
",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(y = CH, f = f, nind = dim(CH)[1], n.occasions = dim(CH)[2],

z = known.state.cjs(CH))

# Initial values
inits <- function(){list(z = cjs.init.z(CH, f), phi.t = runif((dim(CH)

[2]−1), 0, 1), p.t = runif((dim(CH)[2]−1), 0, 1))}

# Parameters monitored
parameters <- c("phi.t", "p.t")

# MCMC settings
ni <- 25000
nt <- 3
nb <- 20000
nc <- 3

# Call WinBUGS from R (BRT 7 min)
cjs.t.t <- bugs(bugs.data, inits, parameters, "cjs-t-t.bug", n.chains =

nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

# Plot posterior distributions of some phi and p
par(mfrow = c(2, 2), cex = 1.2, las = 1, mar=c(5, 4, 2, 1))
plot(density(cjs.t.t$sims.list$phi.t[,6]), xlim = c(0, 1), ylim = c(0, 5),

main = "", xlab = expression(phi[6]), ylab = "Density", frame = FALSE,
lwd = 2)

abline(h = 1, lty = 2, lwd = 2)
par(mar=c(5, 3, 2, 2))
plot(density(cjs.t.t$sims.list$phi.t[,11]), xlim = c(0, 1),

ylim =c(0, 5), main = "", xlab = expression(phi[11]), ylab ="",
frame = FALSE, lwd = 2)

abline(h = 1, lty = 2, lwd = 2)
par(mar=c(5, 4, 2, 1))
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plot(density(cjs.t.t$sims.list$p.t[,6]), xlim = c(0, 1), ylim = c(0, 5),
main = "", xlab = expression(p[6]), ylab = "Density", frame = FALSE,
lwd = 2)

abline(h = 1, lty = 2, lwd = 2)
par(mar=c(5, 3, 2, 2))
plot(density(cjs.t.t$sims.list$p.t[,11]), xlim = c(0, 1), ylim =

c(0, 5), main = "", xlab = expression(p[11]), ylab ="", frame = FALSE,
lwd = 2)

abline(h = 1, lty = 2, lwd = 2)

To inspect the result, we plot the posterior and prior densities of some
parameters (Fig. 7.8). It is obvious that ϕ6 and p6 are identifiable: their
posterior is nicely peaked and does not overlap much with the prior
distribution. By contrast, the posterior distributions of ϕ11 and p11 do
not have a clear peak and the overlap with the prior is large. These
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FIGURE 7.8 Posterior density plots of the sixth and the last survival and recapture
probabilities. The dotted line shows the prior density. The last parameters (ϕ11 and p11) are
not separately identifiable.

7.9 PARAMETER IDENTIFIABILITY 219



parameters are not identifiable. Gimenez et al. (2009b) developed a
quantitative guideline based on the degree of overlap between posterior
and prior to decide when a parameter is identifiable. Note that when the
year effects are not fixed as above, but random, the problem of noniden-
tifiability disappears because information from survival and recapture
from the complete data set is used to estimate the last parameters. You
may want to try this!

In any analysis of capture–recapture models (or actually, of any model),
you should be aware that some parameters might not be estimable,
although WinBUGS (or another software) may give you estimates for all
parameters (Lunn et al., 2010). Obviously, no inference can be made about
nonidentifiable parameters. This challenge is even greater for multistate
capture–recapture models (see Chapter 9).

7.10 FITTING THE CJS TO DATA IN THE M-ARRAY
FORMAT: THE MULTINOMIAL LIKELIHOOD

7.10.1 Introduction

So far we have analyzed the individual capture-histories using a state-
space formulation of the CJS model. This is a very general framework
within which a multitude of different kinds of models can be formulated,
but it comes at a computational cost. As all capture-histories are analyzed
individually, a loop over all individuals is necessary. In addition, every
unknown latent state (e.g., individual survival) needs to be estimated.
Capture–recapture data can, however, also be summarized in the so-called
m-array (Burnham et al., 1987). The CJS model is then fitted using a multi-
nomial likelihood. This has the advantage of much faster computation, but
the disadvantage of reduced flexibility in the modeling. In particular,
models with individual effects can no longer be fitted.

We first introduce the m-array format, by considering the following
example—we have capture-histories of seven individuals:

1 0 1 0
1 1 0 0
1 1 0 0
1 0 0 0
0 1 1 1
0 1 0 0
0 0 1 0

The m-array tabulates the number of individuals released at one
occasion that are next recaptured on each subsequent occasion. It is a tri-
angular matrix, in which rows refer to release occasions and columns refer
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to recapture occasions. An additional column tallies up the individuals
that are not recaptured. To create the m-array, the capture-histories of all
individuals are broken into fragments. The number of captures equals the
number of fragments. Each fragment considers the last release occasion and
the next recapture occasion. For example, the capture-history [1 0 1 0] is
broken into the two fragments [1 0 1 0] and [0 0 1 0]. The first fragment
shows that the individual was released at occasion 1 and first recaptured
at occasion 3. The second fragment shows that the individual was released
on occasion 3 and was never recaptured. The m-array for the seven
capture-histories above is:

Fitting the CJS model to the data using the m-array implicitly assumes
the absence of any individual effects on survival and recapture probabil-
ities. By summarizing the data in this form, it is evident that effects of indi-
vidual covariates cannot be fitted because the capture-histories of the
individuals are broken up. Age as a special class of individual covariate
can be considered but requires a different format of the m-array (see
Section 7.10.3). Otherwise, all the information that originally was included
in the individual capture-histories is kept; it is just summarized in the
form of minimal sufficient statistics.

The following R function converts capture-histories into the m-array
format.

# Function to create a m-array based on capture-histories (CH)
marray <- function(CH){

nind <- dim(CH)[1]
n.occasions <- dim(CH)[2]
m.array <- matrix(data = 0, ncol = n.occasions+1, nrow =

n.occasions)

# Calculate the number of released individuals at each time period
for (t in 1:n.occasions){

m.array[t,1] <- sum(CH[,t])
}

for (i in 1:nind){
pos <- which(CH[i,]!=0)
g <- length(pos)

Recapture Occasion

Release Occasion 2 3 4 Never Recaptured

1 2 1 0 1

2 – 1 0 3

3 – – 1 2
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for (z in 1:(g−1)){
m.array[pos[z],pos[z+1]] <- m.array[pos[z],pos[z+1]] + 1
} #z

} #i

# Calculate the number of individuals that is never recaptured
for (t in 1:n.occasions){

m.array[t,n.occasions+1] <- m.array[t,1] -
sum(m.array[t,2:n.occasions])

}
out <- m.array[1:(n.occasions−1),2:(n.occasions+1)]
return(out)
}

The expected values of the entries of the m-array are given based on the
underlying model parameters (ϕt and pt) and the number of released indi-
viduals. These define the cell probabilities of the multinomial distributions
for each release occasion.

7.10.2 Time-Dependent Models

The rows of the observed m-array data follow a multinomial distribu-
tion with index equal to the number of released individuals at each occa-
sion and the cell probabilities that are functions of survival and recapture
parameters, as shown in the table above. Fitting this model in BUGS is
straightforward: essentially, we only need to define the cell probabilities
of the m-array.

Using the m-array formulation of the CJS model, it is also quite easy to
assess the fit of the model, that is, to compute a Bayesian p-value based
on the posterior predictive distribution of a goodness-of-fit (GOF) statis-
tic (see Gelman et al., 1996, 2004; Section 12.3). This technique for GOF
assessment is also called posterior predictive checking because
its rationale is based on a comparison of data simulated (predicted)
under the model, and the actual data set that is analyzed using that

Release
Occasion

Recaptured at Occasion

2 3 4 Never Recaptured

1 ϕ1p1 ϕ1(1 − p1)
ϕ2p2

ϕ1(1 − p1)
ϕ2(1 − p2)
ϕ3p3

1 − ϕ1p1 − ϕ1(1 − p1)ϕ2p2 − ϕ1(1 − p1)
ϕ2(1 − p2)ϕ3p3 = 1 − Σ(rel. occ 1)

2 0 ϕ2p2 ϕ2(1 − p2)
ϕ3p3

1 − ϕ2p2 − ϕ2(1 − p2)ϕ3p3 = 1 − Σ(rel. occ 2)

3 0 0 ϕ3p3 1 − ϕ3p3 = 1 − Σ(rel. occ 3)

Note: The entry in cell (1,3) is the product ϕ1(1 − p1)ϕ2p2 (and likewise for the other cells).
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model. Simulated data sets under a model are obtained easily as part of
the MCMC updating from the posterior predictive distribution of the
data. Usually, some discrepancy measure is calculated that measures
how “far apart” the data are from their expected values under the
model. Often, omnibus test statistics such as chi-squared are used as a
discrepancy measure, but other statistics may be chosen to specifically
highlight how well a model fits the data in some particular manner,
for instance, how well it describes extreme values (Gelman et al.,
1996). This discrepancy measure is calculated for both the simulated
and the actual data set. The values of both discrepancy measures change
at each iteration of the MCMC simulation algorithm because the para-
meter values change with each iteration as well and they are used
both to generate a replicate data set and to compute the expected values
for the data. At the end of the posterior sampling, one has as many draws
from the posterior distribution of the chosen discrepancy measure for the
simulated (perfect) data sets as for the actual data sets. The simulated
data sets are “perfect” in the sense that they were generated under
exactly the same model that is used for parameter estimation in the
observed data and using the exact parameter values obtained in that ana-
lysis. The posterior draws of the discrepancy measure for the replicate data,
therefore, provide the reference distribution for the discrepancy measure
under the null hypothesis that the model fits our data. The proportion of
times that the discrepancy measure for the simulated data sets is more
extreme than that for the actual data set is called a Bayesian p-value.
Under the null hypothesis that the model in question is the data-generating
model, this should happen about 50% of times; hence, Bayesian p-values
close to 0 or 1 are suspicious. A graph of the values of the discrepancy mea-
sure from the replicate data sets plotted against those for the actual data sets
may be even more informative than the scalar Bayesian p-value to point out
ways how a model may not fit. The value of the p-value represents the pro-
portion of points that lie above the 1:1 line of equality.

Bayesian p-values have been criticized for several reasons. First, they
use the data twice (once, to generate replicate data sets and then to com-
pute the expected data and compare that with both the replicate and the
actual data sets). They may thus not be strict enough and not reject often
enough the hypothesis of a fitting model. Second, it is unclear what value
of a Bayesian p-value represents a good fit. For instance, there would be no
objective way of saying that values outside of the interval (0.05, 0.95)
represent models that do not fit the data. Thus, Bayesian p-values are a
descriptive technique only. And finally, the rationale underlying a Baye-
sian p-value is intrinsically frequentist: Learning from the data is not lim-
ited to the information content in the actual data set but instead based on
hypothetical replicate data sets as well. This may be offensive to hardcore
Bayesians who adhere to the so-called likelihood principle (Lindley, 2006),
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which says that all information about a data set is contained in the like-
lihood function. Our own position in this respect is pragmatic: We like
Bayesian p-values as a simple and very flexible way of pointing out
ways in which a model may not fit a data set.

In the current example of a survival analysis, we could not test the GOF
of a state-space model for binary responses (observed vs. not observed).
The reason for this is that discrepancy measures such as the deviance are
uninformative about model fit for binary responses (McCullagh and
Nelder, 1989). GOF can, however, be assessed for some summary of bin-
ary responses and the m-array represents just one such summary. So here
now, we create replicate data (i.e., m-arrays, eij), and compare the observed
(xij) and the expected m-arrays using a discrepancy measure. We could use
the χ 2-dispcrepancy as in Chapter 12, but instead follow Brooks et al.
(2000b) and use the Freeman-Tukey statistic (D = Σðx1/2ij − e1/2ij Þ2). It
makes unnecessary to pool cells with small expected values. The Freeman–
Tukey statistic is computed for the observed and simulated data.

We use the data as created in Section 7.9 to illustrate the use of the
model. The following code fits the CJS model using the multinomial like-
lihood and includes the posterior predictive check.

# Specify model in BUGS language
sink("cjs-mnl.bug")
cat("
model {

# Priors and constraints
for (t in 1:(n.occasions−1)){

phi[t] ~ dunif(0, 1) # Priors for survival
p[t] ~ dunif(0, 1) # Priors for recapture
}

# Define the multinomial likelihood
for (t in 1:(n.occasions−1)){

marr[t,1:n.occasions] ~ dmulti(pr[t, ], r[t])
}

# Calculate the number of birds released each year
for (t in 1:(n.occasions−1)){

r[t] <- sum(marr[t, ])
}

# Define the cell probabilities of the m-array
# Main diagonal
for (t in 1:(n.occasions−1)){

q[t] <- 1−p[t] # Probability of non-recapture
pr[t,t] <- phi[t]*p[t]
# Above main diagonal
for (j in (t+1):(n.occasions−1)){

pr[t,j] <- prod(phi[t:j])*prod(q[t:(j−1)])*p[j]
} #j
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# Below main diagonal
for (j in 1:(t−1)){

pr[t,j] <- 0
} #j

} #t
# Last column: probability of non-recapture
for (t in 1:(n.occasions−1)){

pr[t,n.occasions] <- 1−sum(pr[t,1:(n.occasions−1)])
} #t

# Assess model fit using Freeman-Tukey statistic
# Compute fit statistics for observed data
for (t in 1:(n.occasions−1)){

for (j in 1:n.occasions){
expmarr[t,j] <- r[t]*pr[t,j]
E.org[t,j] <- pow((pow(marr[t,j], 0.5)−pow(expmarr[t,j],

0.5)), 2)
} #j

} #t

# Generate replicate data and compute fit stats from them
for (t in 1:(n.occasions−1)){

marr.new[t,1:n.occasions] ~ dmulti(pr[t, ], r[t])
for (j in 1:n.occasions){

E.new[t,j] <- pow((pow(marr.new[t,j], 0.5)-pow(expmarr[t,j],
0.5)), 2)

} #j
} #t

fit <- sum(E.org[,])
fit.new <- sum(E.new[,])
}
",fill = TRUE)
sink()

# Create the m-array from the capture-histories
marr <- marray(CH)

# Bundle data
bugs.data <- list(marr = marr, n.occasions = dim(marr)[2])

# Initial values
inits <- function(){list(phi = runif(dim(marr)[2]−1, 0, 1),

p = runif(dim(marr)[2]−1, 0, 1))}

# Parameters monitored
parameters <- c("phi", "p", "fit", "fit.new")

# MCMC settings
ni <- 10000
nt <- 3
nb <- 5000
nc <- 3

# Call WinBUGS from R (BRT 1 min)
cjs <- bugs(bugs.data, inits, parameters, "cjs-mnl.bug", n.chains =

nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())
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print(cjs, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff
phi[1] 0.632 0.167 0.331 0.505 0.621 0.754 0.960 1.001 5000
[ ... ]
p[11] 0.577 0.206 0.261 0.406 0.547 0.742 0.968 1.006 380
fit 10.563 1.674 7.773 9.378 10.400 11.570 14.320 1.001 5000
fit.new 12.671 2.744 8.095 10.720 12.420 14.330 18.830 1.002 2400

The model converges quickly and the MCMC samples are obtained in a
short time (to compare, you may use the same data and run the corre-
sponding state-space model of Section 7.3). The comparison of the discre-
pancy between the observed and the simulated data (Fig. 7.9) shows that
they are similar, suggesting that the model is adequate for the data set.
This is confirmed by a Bayesian p-value of 0.75. For more discussion
about checking of capture–recapture models, see Brooks et al. (2000a,
2000b) and King et al. (2010).

# Evaluation of fit
plot(cjs$sims.list$fit, cjs$sims.list$fit.new, xlab = "Discrepancy

actual data", ylab = "Discrepancy replicate data", las = 1,
ylim = c(5, 25), xlim = c(5, 25), bty ="n")
abline(0, 1, col = "black", lwd = 2)
mean(cjs$sims.list$fit.new > cjs$sims.list$fit)
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FIGURE 7.9 Posterior predictive check of model fit by a scatter plot of the discrepancy
measure for replicate (simulated) versus actual (observed) data in a CJS model. The Bayesian
p-value is the proportion of points above the 1:1 line.
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Construction of models with time effects (fixed or random) using the
multinomial likelihood requires changes in the “Priors and constraints”
part of the model code, in exactly the same way as we have introduced
for the state-space formulation. However, the formulation of models
with groups is slightly different. We need to create an m-array for each
group and to write a separate likelihood (with different parameters) for
each data set. Once this is done, we can constrain the group-specific para-
meters in the same way as with models using the state-space formulation
(i.e., we can regard groups as fixed or as random, and we can combine
them with time effects). See exercise 2 in Section 7.13 for an example.

7.10.3 Age-Dependent Models

Models with age-dependent survival fitted with the multinomial like-
lihood need some adaptations (m-array, analyzing code), and we show
this in detail using an example. We look at the situation in which young
and adult little owls are marked and assume that survival in the first year
of life (from age 0 to age 1 year) is different from survival in subsequent
age classes (from age 1 onward). We first start with the simulation of the
data. We will create two data sets, one for individuals marked as juveniles,
and another for individuals marked as adults.

# Define parameter values
n.occasions <- 12 # Number of capture occasions
marked.j <- rep(200, n.occasions−1) # Annual number of newly marked

juveniles
marked.a <- rep(30, n.occasions−1) # Annual number of newly marked

adults
phi.juv <- 0.3 # Juvenile annual survival
phi.ad <- 0.65 # Adult annual survival
p <- rep(0.5, n.occasions−1) # Recapture
phi.j <- c(phi.juv, rep(phi.ad,n.occasions−2))
phi.a <- rep(phi.ad, n.occasions−1)

# Define matrices with survival and recapture probabilities
PHI.J <- matrix(0, ncol = n.occasions−1, nrow = sum(marked.j))
for (i in 1:(length(marked.j)−1)){

PHI.J[(sum(marked.j[1:i])−
marked.j[i]+1):sum(marked.j[1:i]),i:(n.occasions−1)] <-
matrix(rep(phi.j[1:(n.occasions−i)], marked.j[i]),
ncol = n.occasions−i, byrow = TRUE)
}

P.J <- matrix(rep(p, n.occasions*sum(marked.j)), ncol =
n.occasions−1, nrow = sum(marked.j), byrow = TRUE)

PHI.A <- matrix(rep(phi.a, sum(marked.a)), ncol = n.occasions−1,
nrow = sum(marked.a), byrow = TRUE)

P.A <- matrix(rep(p, sum(marked.a)), ncol = n.occasions−1,
nrow = sum(marked.a), byrow = TRUE)
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# Apply simulation function
CH.J <- simul.cjs(PHI.J, P.J, marked.j)
CH.A <- simul.cjs(PHI.A, P.A, marked.a)

Next, we create two m-arrays, one for juveniles and another for
adults. The difficulty is that whenever an individual initially marked
as a juvenile is recaptured, it has become an adult. Thus, it must be
“released” in the m-array of the individuals initially marked as adults.
To achieve this goal, we first split the capture-histories of individuals
marked as juveniles based on whether or not they were ever recaptured
(recaptured at least once: CH.J.R, never recaptured: CH.J.N). The first
capture of CH.J.R is then removed, the resulting capture-histories
added to the capture-histories of the individuals marked as adults and
the m-array computed. Next, all recaptures after the first recapture of
the original CH.J.R matrix are removed and the m-array computed.
Because all these individuals are released as adults, the last columns
of the m-array summarizing the number of individuals never recaptured
have to be set to zero. Finally, we create the m-array for CH.J.N and add
it to the previous m-array. The following code performs these data
manipulations.

cap <- apply(CH.J, 1, sum)
ind <- which(cap >= 2)
CH.J.R <- CH.J[ind,] # Juvenile CH recaptured at least once
CH.J.N <- CH.J[-ind,] # Juvenile CH never recaptured

# Remove first capture
first <- numeric()
for (i in 1:dim(CH.J.R)[1]){

first[i] <- min(which(CH.J.R[i,]==1))
}

CH.J.R1 <- CH.J.R
for (i in 1:dim(CH.J.R)[1]){

CH.J.R1[i,first[i]] <- 0
}

# Add grown-up juveniles to adults and create m-array
CH.A.m <- rbind(CH.A, CH.J.R1)
CH.A.marray <- marray(CH.A.m)

# Create CH matrix for juveniles, ignoring subsequent recaptures
second <- numeric()
for (i in 1:dim(CH.J.R1)[1]){

second[i] <- min(which(CH.J.R1[i,]==1))
}

CH.J.R2 <- matrix(0, nrow = dim(CH.J.R)[1], ncol = dim(CH.J.R)[2])
for (i in 1:dim(CH.J.R)[1]){

CH.J.R2[i,first[i]] <- 1
CH.J.R2[i,second[i]] <- 1
}

# Create m-array for these
CH.J.R.marray <- marray(CH.J.R2)
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# The last column ought to show the number of juveniles not recaptured
again and should all be zeros, since all of them are released as adults

CH.J.R.marray[,dim(CH.J)[2]] <- 0

# Create the m-array for juveniles never recaptured and add it to the
previous m-array

CH.J.N.marray <- marray(CH.J.N)
CH.J.marray <- CH.J.R.marray + CH.J.N.marray

Now we write the BUGS code for the age-dependent model. We specify
two component likelihoods, one for the m-array of adults and another for
the m-array of juveniles. The code for adults is exactly the same as before
(Section 7.10.2), but the code for juveniles has some twists. Here, the first
survival for each release cohort (juvenile survival) is different from subse-
quent survival (which is that of adults).

# Specify model in BUGS language
sink("cjs-mnl-age.bug")
cat("
model {

# Priors and constraints
for (t in 1:(n.occasions−1)){

phi.juv[t] <- mean.phijuv
phi.ad[t] <- mean.phiad
p[t] <- mean.p
}

mean.phijuv ~ dunif(0, 1) # Prior for mean juv. survival
mean.phiad ~ dunif(0, 1) # Prior for mean ad. survival
mean.p ~ dunif(0, 1) # Prior for mean recapture

# Define the multinomial likelihood
for (t in 1:(n.occasions−1)){

marr.j[t,1:n.occasions] ~ dmulti(pr.j[t,], r.j[t])
marr.a[t,1:n.occasions] ~ dmulti(pr.a[t,], r.a[t])
}

# Calculate the number of birds released each year
for (t in 1:(n.occasions−1)){

r.j[t] <- sum(marr.j[t,])
r.a[t] <- sum(marr.a[t,])
}

# Define the cell probabilities of the m-arrays
# Main diagonal
for (t in 1:(n.occasions−1)){

q[t] <- 1−p[t] # Probability of non-recapture
pr.j[t,t] <- phi.juv[t]*p[t]
pr.a[t,t] <- phi.ad[t]*p[t]
# Above main diagonal
for (j in (t+1):(n.occasions−1)){

pr.j[t,j] <- phi.juv[t]*prod(phi.ad[(t+1):j])*prod(q[t:
(j−1)])*p[j]

pr.a[t,j] <- prod(phi.ad[t:j])*prod(q[t:(j−1)])*p[j]
} #j
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# Below main diagonal
for (j in 1:(t−1)){

pr.j[t,j] <- 0
pr.a[t,j] <- 0
} #j

} #t
# Last column: probability of non-recapture
for (t in 1:(n.occasions−1)){

pr.j[t,n.occasions] <- 1−sum(pr.j[t,1:(n.occasions−1)])
pr.a[t,n.occasions] <- 1−sum(pr.a[t,1:(n.occasions−1)])
} #t

}
",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(marr.j = CH.J.marray, marr.a = CH.A.marray,

n.occasions = dim(CH.J.marray)[2])

# Initial values
inits <- function(){list(mean.phijuv = runif(1, 0, 1), mean.phiad =

runif(1, 0, 1), mean.p = runif(1, 0, 1))}

# Parameters monitored
parameters <- c("mean.phijuv", "mean.phiad", "mean.p")

# MCMC settings
ni <- 3000
nt <- 3
nb <- 1000
nc <- 3

# Call WinBUGS from R (BRT <1 min)
cjs.2 <- bugs(bugs.data, inits, parameters, "cjs-mnl-age.bug",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())

Convergence is achieved quickly; 3000 iterations with a burnin of 1000
are sufficient. Plotting the posterior distributions shows parameter esti-
mates that resemble well the values used to simulate the data (Fig. 7.10).
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FIGURE 7.10 Posterior distributions of juvenile and adult survival and of recapture
probability. Red lines indicate the values used to generate the data set.
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par(mfrow = c(1, 3), las = 1)
hist(cjs.2$sims.list$mean.phijuv, nclass = 30, col = "gray", main = "",

xlab = "Juvenile survival", ylab = "Frequency")
abline(v = phi.juv, col = "red", lwd = 2)
hist(cjs.2$sims.list$mean.phiad, nclass = 30, col = "gray", main = "",

xlab = "Adult survival", ylab = "")
abline(v = phi.ad, col = "red", lwd = 2)
hist(cjs.2$sims.list$mean.p, nclass = 30, col = "gray", main = "",

xlab = "Recapture", ylab = "")
abline(v = p[1], col = "red", lwd = 2)

We assumed that recapture probability was not dependent on age
because all birds are >1 year old when they are first recaptured. Some-
times, however, it may be useful to fit age effects for recapture probability.
Often, young individuals do not reproduce as successfully as adults. If
individuals can only be captured when reproducing, this can result in a
lower recapture probability of young individuals.

The model could also be extended to include more age classes. In prin-
ciple, the number of m-arrays is equal to the number of age classes in the
model. However, careful bookkeeping is required to fit these models. The
age of each individual at each recapture has to be evaluated, and after-
ward the individual is “released” in the m-array in the corresponding
age class. M-arrays are specified for each age class in the BUGS model
code, and all of them have an age structure with the exception of the
m-array for the oldest age class. Cell probabilities of the m-array of the
second oldest age class have an age structure with two classes, that of
the third-oldest age class an age structure with three classes, and so forth.

7.11 ANALYSIS OF A REAL DATA SET: SURVIVAL
OF FEMALE LEISLER’S BATS

Leisler’s bat (Fig. 7.11) is a medium-sized bat species that forms nursery
colonies in cavities in woodlands and is widespread throughout Europe.
Northern populations migrate to the Mediterranean in winter. Wigbert
Schorcht and his colleagues studied a population of Leisler’s bat in Thur-
ingia (Germany) from 1989 to 2008. They placed bat boxes in a forest and
regularly captured individuals in them. The capture–recapture data have
been extensively analyzed using CJS models fitted in a frequentist frame-
work (Schorcht et al., 2009). Here, we analyze a subset of these data con-
sisting of 181 adult females that were born in the study area. Females are
highly philopatric and thus our estimate of apparent survival is likely
close to true survival. Some initial modeling suggested that adult survival
was subject to strong temporal variation, whereas recapture probabilities
were constant over time (Schorcht et al., 2009). Our interest here is to esti-
mate mean annual survival as well as its temporal variance.
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We will therefore fit a model denoted by (ϕt, p.). We first performed a
frequentist GOF test with program U-CARE (Choquet et al., 2001). The
test assesses the fit of the time-dependent CJS model (ϕt, pt) and didn’t
show any indication of lack of fit ( χ249 = 41:38, P = 0.77). Yet, because we
fit a model with random year effects, we want to perform also a posterior
predictive check to evaluate the goodness-of-fit and estimate a Bayesian
p-value for that model. The data are already summarized in the m-array
format, thus we will use the multinomial likelihood to fit the model.

m.leisleri <- matrix(c(4,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
0,5,0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
0,0,9,2,0,0,0,0,0,0,0,0,0,0,0,0,0,0,3,
0,0,0,10,2,0,0,0,0,0,0,0,0,0,0,0,0,0,5,
0,0,0,0,10,2,1,0,0,0,0,0,0,0,0,0,0,0,6,
0,0,0,0,0,15,0,0,0,0,0,0,0,0,0,0,0,0,6,
0,0,0,0,0,0,11,2,0,1,0,0,0,0,0,0,0,0,19,
0,0,0,0,0,0,0,12,1,1,0,0,0,0,0,0,0,0,6,
0,0,0,0,0,0,0,0,13,2,0,0,0,0,0,0,0,0,4,
0,0,0,0,0,0,0,0,0,14,0,0,0,0,0,0,0,0,6,
0,0,0,0,0,0,0,0,0,0,13,1,0,0,0,1,0,0,8,
0,0,0,0,0,0,0,0,0,0,0,15,3,1,0,0,0,0,12,
0,0,0,0,0,0,0,0,0,0,0,0,12,4,0,1,0,0,7,
0,0,0,0,0,0,0,0,0,0,0,0,0,19,2,0,0,0,3,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,28,1,0,0,4,

FIGURE 7.11 Leisler’s bat (Nyctalus leisleri) (Photograph D. Nill).
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0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,22,7,2,21,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,12,2,21,
0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,14,18), ncol = 19, nrow = 18,

byrow = TRUE)

The BUGS code poses no additional difficulties; we merely have to add
the hierarchical extension to the multinomial model to account for random
year effects. This extension assumes that the annual survival probabilities
are random draws from a normal distribution whose mean is the logit of
mean survival and a variance. This variance (sigma2 in the code below) is
the temporal variance of survival on the logit scale. In case we prefer to
express the temporal variance on the probability scale, we also have a
parameter called sigma2.real.

# Specify model in BUGS language
sink("cjs-mnl-ran.bug")
cat("
model {

# Priors and constraints
for (t in 1:(n.occasions−1)){

logit(phi[t]) <- mu + epsilon[t]
epsilon[t] ~ dnorm(0, tau)
p[t] <- mean.p
}

mean.phi ~ dunif(0, 1) # Prior for mean survival
mu <- log(mean.phi / (1−mean.phi)) # Logit transformation
sigma ~ dunif(0, 5) # Prior for standard deviation
tau <- pow(sigma, −2)
sigma2 <- pow(sigma, 2)
# Temporal variance on real scale
sigma2.real <- sigma2 * pow(mean.phi, 2) * pow((1−mean.phi), 2)
mean.p ~ dunif(0, 1) # Prior for mean recapture

# Define the multinomial likelihood
for (t in 1:(n.occasions−1)){

marr[t,1:n.occasions] ~ dmulti(pr[t,], r[t])
}

# Calculate the number of birds released each year
for (t in 1:(n.occasions−1)){

r[t] <- sum(marr[t,])
}

# Define the cell probabilities of the m-array:
# Main diagonal
for (t in 1:(n.occasions−1)){

q[t] <- 1−p[t]
pr[t,t] <- phi[t]*p[t]
# Above main diagonal
for (j in (t+1):(n.occasions−1)){

pr[t,j] <- prod(phi[t:j])*prod(q[t:(j−1)])*p[j]
} #j
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# Below main diagonal
for (j in 1:(t−1)){

pr[t,j]<-0
} #j

} #t
# Last column: probability of non-recapture
for (t in 1:(n.occasions−1)){

pr[t,n.occasions] <- 1−sum(pr[t,1:(n.occasions−1)])
} # t

# Assess model fit using Freeman-Tukey statistic

# Compute fit statistics for observed data
for (t in 1:(n.occasions−1)){

for (j in 1:n.occasions){
expmarr[t,j] <- r[t]*pr[t,j]
E.org[t,j] <- pow((pow(marr[t,j], 0.5)−pow(expmarr[t,j],

0.5)), 2)
}

}

# Generate replicate data and compute fit stats from them
for (t in 1:(n.occasions−1)){

marr.new[t,1:n.occasions] ~ dmulti(pr[t,], r[t])
for (j in 1:n.occasions){

E.new[t,j] <- pow((pow(marr.new[t,j], 0.5)-pow(expmarr[t,j],
0.5)), 2)

}
}

fit <- sum(E.org[,])
fit.new <- sum(E.new[,])
}
",fill = TRUE)
sink()

# Bundle data
bugs.data <- list(marr = m.leisleri, n.occasions = dim(m.leisleri)[2])

# Initial values
inits <- function(){list(mean.phi = runif(1, 0, 1), sigma = runif(1, 0,

5), mean.p = runif(1, 0, 1))}

# Parameters monitored
parameters <- c("phi", "mean.p", "mean.phi", "sigma2", "sigma2.real",

"fit", "fit.new")

# MCMC settings
ni <- 5000
nt <- 3
nb <- 1000
nc <- 3

# Call WinBUGS from R (BRT 3 min)
leis.result <- bugs(bugs.data, inits, parameters, "cjs-mnl-ran.bug",

n.chains = nc, n.thin = nt, n.iter = ni, n.burnin = nb, debug = TRUE,
bugs.directory = bugs.dir, working.directory = getwd())
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The Markov chains converge quickly; with just 5000 iterations, we
obtain satisfactory Rhat values (all <1.01). Mean annual survival is
about 74%. Interestingly, and by chance, the recapture probability is
numerically almost identical. Figure 7.12 plots the posterior distributions
of the annual and mean survival probabilities as well as of the temporal
variance. Annual survival probabilities were similar in most years, but in
some, they were unusually low (1996–1997, 2006–2007) or unusually high
(2003–2005). A next step in the demographic analysis of this population
might be to find out which environmental factor is correlated with the
temporal variation in survival, as shown in Section 7.4.3.

# Summarize posteriors
print(leis.result, digits = 3)

mean sd 2.5% 25% 50% 75% 97.5% Rhat n.eff

phi[1] 0.716 0.106 0.481 0.653 0.726 0.789 0.904 1.001 4000

[ ... ]
phi[18] 0.658 0.093 0.464 0.600 0.661 0.723 0.832 1.004 590

mean.p 0.747 0.029 0.689 0.728 0.748 0.766 0.800 1.001 4000

mean.phi 0.739 0.038 0.661 0.715 0.739 0.763 0.815 1.003 2700

sigma2 0.467 0.340 0.062 0.235 0.386 0.610 1.341 1.012 390

sigma2.real 0.017 0.013 0.002 0.009 0.014 0.022 0.048 1.013 450

fit 21.047 2.279 17.260 19.410 20.850 22.400 26.279 1.003 830

fit.new 18.950 3.458 12.950 16.450 18.705 21.100 26.370 1.001 4000

# Produce figure of female survival probabilities
par(mfrow = c(1, 2), las = 1, mar=c(4, 4, 2, 2), mgp = c(3, 1, 0))
lower <- upper <- numeric()
T <- dim(m.leisleri)[2]-1
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FIGURE 7.12 (a) Annual survival probability of adult female Leisler’s bats (closed
symbols, with 95% CRIs) and mean survival (red line; with 95% CRI dotted). (b) Posterior
distribution of the temporal variance of adult survival.
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for (t in 1:T){
lower[t] <- quantile(leis.result$sims.list$phi[,t], 0.025)
upper[t] <- quantile(leis.result$sims.list$phi[,t], 0.975)
}

plot(y = leis.result$mean$phi, x = (1:T)+0.5, type = "b", pch = 16, ylim =
c(0.3, 1), ylab = "Annual survival probability", xlab = "", axes = F)

axis(1, at = seq(1,(T+1),2), labels = seq(1990,2008,2))
axis(1, at = 1:(T+1), labels = rep("", T+1), tcl = –0.25)
axis(2, las = 1)
mtext("Year", 1, line = 2.25)
segments((1:T)+0.5, lower, (1:T)+0.5, upper)
segments(1, leis.result$mean$mean.phi, T+1, leis.result$mean$mean.phi,

lty = 2, col = "red", lwd = 2)
segments(1, quantile(leis.result$sims.list$mean.phi,0.025), T+1,

quantile(leis.result$sims.list$mean.phi, 0.025), lty = 2, col = "red")
segments(1, quantile(leis.result$sims.list$mean.phi, 0.975), T+1,

quantile(leis.result$sims.list$mean.phi, 0.975), lty = 2, col = "red")
hist(leis.result$sims.list$sigma2.real, nclass = 45, col = "gray",

main = "", las = 1, xlab = "")
mtext("Temporal variance of survival", 1, line = 2.25)

The GOF evaluation of the model shows a good fit (Fig. 7.13) with a
Bayesian p-value of 0.27. The result is thus qualitatively the same as the
GOF test performed in the frequentist framework (see above). Yet, the fre-
quentist goodness-of-fit test evaluates the model with fixed year effects
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FIGURE 7.13 Scatter plot of replicate (simulated) versus actual (observed) discrepancy
measures of model for female Leisler’s bats. The Bayesian p-value is the proportion of
points above the 1:1 equality line.
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(ϕt, pt), whereas the Bayesian test evaluates the model actually used for the
estimation, that is, a model with random year effects on survival and con-
stant recapture probabilities (ϕt, p.).

# Evaluation of fit
plot(leis.result$sims.list$fit, leis.result$sims.list$fit.new,

main = "", xlab = "Discrepancy actual data", ylab = "Discrepancy
replicate data", las = 1, ylim = c(10, 35), xlim = c(10, 35), frame = FALSE)

abline(0, 1, col = "black")

7.12 SUMMARY AND OUTLOOK

This chapter presents models of the Cormack–Jolly–Seber (CJS) class for
analysis of capture–recapture data in the Bayesian framework to estimate
probabilities of survival and recapture. We introduced two different
approaches, based on a state-space or a multinomial likelihood. The
state-space likelihood has the advantage that it is very flexible and espe-
cially enables us to fit models with individual effects, including random
effects. The downside is that the Markov chains of these models take much
longer per iteration and mix less well, resulting sometimes in a big com-
putational burden. With the multinomial likelihood, we cannot fit models
with individual effects, but otherwise the same models are possible as
under a state-space likelihood. Use of the multinomial likelihood results in
quicker updates and better mixing of the chains. We therefore recommend
using the multinomial likelihood unless individual effects need to be fitted.

This chapter contains very important material for the broad class of
capture–recapture models because we have introduced several key con-
cepts. We have shown how we can model survival (and recapture)
along the “time” as well as along the “individual” axes using GLM formu-
lations (see also Chapter 6 for the analoguous concept to model detection
probability). The corresponding models can have fixed or random effects,
and there is great flexibility in combining them. In addition, we have
introduced age-dependent models, which are a specific combination of
effects along the time and the individual axes. We also have introduced
goodness-of-fit testing using posterior predictive checks (Bayesian
p-values). All these key concepts can be applied to the capture–recapture
models in later chapters and indeed in an analogous way to all the models
in the rest of the book.

Capture–recapture data could also be analyzed with the Jolly–Seber
model (JS model; Williams et al., 2002), which is similar to the
Cormack–Jolly–Seber model of this chapter. The main difference is that
the CJS model conditions on first capture, whereas the JS model describes
the complete capture-history. This means that the zeros before the first
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capture are not modeled in the CJS model, but they are in the JS model.
The latter allows the estimation of additional parameters such as recruit-
ment and population size, at the expense of additional assumptions. We
describe the JS model in Chapter 10. Further extensions to this class of
model include the robust design model (Kendall et al., 1997; Schofield
et al., 2009), reverse-time modeling to estimate population growth rate
(Pradel, 1996), or the relative contribution of survival and recruitment to
population growth (Nichols et al., 2000). These could be implemented in
WinBUGS as well.

This chapter was the first to introduce models for estimation of survival
and related demographic parameters. Much of the material (e.g., m-array,
state-space likelihood, random and fixed effects in survival) also carries
over to similar models in Chapters 8–10. In Chapter 11, we will combine
the CJS model with other models into an integrated population model.

7.13 EXERCISES

1. For reasons of greater generality, we always specify CJS models with
a likelihood that allows all parameters to potentially vary by individual
and time. For a beginner, this may not be the simplest way to fit a
CJS model. Consider the constant model in Section 7.3 and adapt the
BUGSmodel code so that we fit that model directly, without constraining
the parameter matrices.

2. Simulate capture–recapture data of a species for males and females.
The study is conducted for 15 years; the mean survival of males is
0.6 that of females is 0.5, and recapture is 0.4 for both. Assume that each
year 30 individuals of each sex are newly marked. Fit the model {ϕsex, p}
to the data using the multinomial likelihood.

3. Simulate capture–recapture data of a species for males and females. The
study is conducted for 10 years, and each year 30 young and 20 adults
of each sex are newly marked. The mean survival of young males is
0.3 (0.2 for females) and mean survival of adults of both sexes is 0.7.
Further assume that the recapture probability of males is time-dependent
[0.5, 0.6, 0.4, 0.4, 0.7, 0.5, 0.8, 0.3, 0.8]. Recapture probability of females
varies in parallel to that of the males, it is a bit higher than that of
males (difference on the logit scale: 0.3). Analyze these data with the
data-generating model.

4. For the model in Section 7.3, do a simulation-based assessment of bias
and precision. Generate a data set and then fit the model 500 times
(perhaps for smaller sample size to save time) and each time save
the estimates. On completion, print out the mean and the standard
deviation of the estimates and also plot the distribution of these
estimates. Is the estimator from the model biased? Where in the graph
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can you see the standard error of the estimates? Are there other
methods to check whether a model produces unbiased parameter
estimates than simulation?

5. Take the data where survival of young and adult individuals is
different (Section 7.7), but where only individuals of exact known age
(marked as young) are included. Fit a model, in which survival after the
second year changes linearly with increasing age.

6. Simulate data of a study that is running for 15 years, and each year
100 young individuals are marked. Survival in the first year is 0.4 on
average with a temporal variability of 0.5 (on the logit scale), survival of
older individuals is 0.8 without variability. Recapture probability is 0.6
for all individuals. Analyze these data with the data-generating model
using the state-space and the multinomial likelihood.
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